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1.0 INTRODUCTION AND SUMMARY

1.1 STUDY OBJECTIVES AND A SAMPIE CONFIGURATION

The overall objectives of this study are as follows:

e Develop the theoretical techniques required to determine
the dynamic behavior of a realistically modeled rotating

space station

® Provide the Langley Research Center with a versatile
computer program that is operational in the LRC computer

facility

e Present practical concepts for experimental verification

of the analytical results

The specific objectives of the program involve the development of
a mathematical model capable of simulating the three-dimensional dynamic
behavior of a rotatlng flexible space station. This model and its

associated computer program includes the follow1ng features:
s A flexible Laboratory with attached flékible appendages
e A flexible Counterweight with attached flexible appendages

A flexible connecfing structure whose characteristics allow

for the mathematical treatment of deployment and retraction

e Moving point masses in the Laboratory for the simulation of

crew or cargo motion, a mass-balancing system, etc.

e Fluid in motion on the Laboratory for the similation of a
fluid-type mass-balancing system, disturbances due to fluid

transfer in the cooling system, etc.
e Provisions for control systems

e Provisions for general external dlsturbances on any portion

of the Laboratory or the Counterweight
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One example of a configuration that can be studied using the
mathematical model developed herein is shown in Figure 1.1. The
Laboratory is constructed of a core module and several appendages
including two solar panels, All of these modules including the core
module are flexible, The Counterweight is also composed of several
flexible modules. In addition, there is a flexible Connecting
Structure which is ¢tapable of deployment and retraction. As indicated,
fluid in motion is present in the pipe which terminates at a reservoir
at each end. Several moving point masses represent crew members, an
elevator, and a massebalancing system. Control systems (not shown)
control deployment, spin rate, mass balancing, wobble and (when the

¥

system is not rotating) attitude.

1.2 ORGANTZATION OF THE STUDY AND MATHEMATICAL-MODEL IDEALIZATION

Both the analysis and the computer program have been organized

into two phases. In Phase I (Modal Synthesis), the modal properties

of each Laboratory substructure (core module, appendage, solar panel,

etc.) are coupled to derive the non-rotating modal properties of the entire
Laboratory. The Counterweight modes are similarly synthesized.' Each coupled
structure (Laboratory or Counterweight) may be comprised of up to 17 sub-
structures (five core modules and twelve appendages as shown schematically

in Figure 3.1). .The vibration modes of the various substructures are supplied
to the computer program as input data and they do not have to have physical
motions in a common coordinate system. One limitation is that appendages
cannot be connected to other appendages. Detailed information on the

idealization used for the Phase I study is presented in Section 3.0.

The modal properties of both the Laboratory and the Counterweight
are gutomatically transferred from the Phase I to the Phase II computer

program. Alternatively, if the user already has vibration modes for

the entire Laboratory or the Counterweight, he may supply these directly
to the Phase IT computer program and use these modes to complete the
study. There are no physical restrictions (such as interconnected

appendages) on modes which are supplied to Phase II directly by the user.
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In the Phase II study, the equations of motion were written for

an idealized vehicle which has the following properties (see Figure 4.1):

An arbitrary number of structural masses (including rotatory

]

inertias) on the Laboratory and on the Counterweight

» A massless flexible connecting structure; the length may be

varied as a function of time
« Damping in all structures

» An arbitrary number of moving point masses on the Laboratory

which travel along its deformed shape

o A fluid system consisting of an incompressible fluid confined
within two reservoirs and a connecting pipe; this system may

be located anywhere within the Laboratory
» Forces and torques which may be applied to any structural mass

Detailed information on this idealization is presented in Sections 4.0
and 4.1,

Whereas the equations of motion are written for a general vehicle,
certain restrictions were imposed as a result of available computer
facilities; for example, the number of masses on the Laboratory is
limited to 100, and the number of masses on the Counterweight is
similarly restricted. These restrictions are listed in Volume IT,

the Computer Program User's Manual.

The Newton and Euler equations were written for each mass point
in vector form. Then the system of equations was transformed to a
system of Lagrange equations with quasi coordinates (i.e., angular-
velocity components were among the coordinates used). This technique
combines the simplicity of the vector derivation with the advantages of
the Lagrange approach, such as the ability to handle constraints

automatically.
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The user may conduct a series of increasingly complex dynamic
studies by meking use of the constraint options which are available
in the program. These include automatic rigidizing of the Laboratory,
the Counterweight, or the entire Space Station. While the Connecting
Structure has no elastic deformation in the last option, it still can
deploy and retract. Other features designed to assist the analyst
‘include optional print-out of the total system kinetic energy, angular

momentum in inertial coordinates, and center-of-mass position.

In order to provide additional versatility, several items are
modeled in subroutines so that they may be easily replaced bj the user.
Examples are:

e The structural properties of the Connecting Structure

a The motion commands

e The control systems

The connecting-structure subroutine supplied with the computer
program contains a model of a tubular beam described in Section
4.4,2, This beam is built-in at each end; however, it is capable of

deployment and retraction.

Motion-command subroutines command the sequence and history of
such controlled events as crew or elevator motion, spin speed, and
deployment. The subroutines provided contain a set of functions

which are based on a sequence of constant accelerations.

Four control subroutines are provided. These model systems
control the attitude of the non-spimning vehicle, the spin speed,
position of the Spacé Station center of mass (mass balancing), and
wobble damping. Jets are employed to accomplish the attitude and
spin-speed control functions; center-of-mass control is accomplished
by moving a balance mass, and wobble damping is accomplished by using
8 control-moment gyroscope. The control systems were designed for a
rigid space-station model (which can deploy and retract) and were then
modified for operation on the Phase II flexible-body computer program.

Concepts are presented in Section 7 for an experimental model
which can be used to verify the major analytical results. This model
is capable of deployment and retraction maneuvers and can be fitted

with a scaled set of control systems.
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2.0 CONCLUSIONS

The analysis and computer programs summarized in the previous section
- provide the capability to perform comprehensive dynamic analyses of a large
class of rotating and non-rotating flexible space stations. The modes of a
Laboratory and Counterweight can be synthesized in the Phase I program using,
as input data, the modes of the component modules. A structure consisting of

up to 17 modules may be treated.

Time histories of dynamic behavior of a Space Station consisting primarily
of a Laboratory and a Counterweight with any shape and mass distribution may be
investigated by using the Phase II computer program. The Connecting Structure
and control systems may be changed by replacing subroutines. Moving masses and
a fluid system may be located anywhere on the Laboratory. Demonstration runs
were made using a complex idealization of a realistic Space Station. Mass
motion, fluid motion, and all -control systems operated properly. These demon-
strations verify the practicelity of a very general computer program for
investigating the time histo;y motions of flexible satellltes. This program is

a powerful tool for the design of complex rotating and npn-rotating spacecraft.

One of the control systems developed for demonstration purposes sensed
mass shifts due to a moving elevator and automatically moved a balance mass to
maintain the balance of the rotating Space Station. Thie unique type of control
system has not been applied previously. Attitude control deployment, spin up,
and wobble control maneuvers were also successfully demonstrated. The program
may be used to investigate sequentlal or simultaneous controlled maneuvers in a

s1ngle run.

Concepts were developed for constructing an operational scale model of the
rotating Space Station. A complete set of controls may be mounted on this model
to study controlled maneuvers including deployment and retractlon. This model

should be far superior to any existing space station model.



3.0 PHASE I - DEVELOPMENT OF THE MODAL-SYNTHESIS PROCEDURE

" 3.1 INTRODUCTION

The flexibility characteristics of the Laboratory and Count erweight
are represented in the analysis by their non-rotating free-free modes of
vibration. These modes are synthesized from the mass and modal properties

of the individual modules which make up the Laboratory and Counterweight.

To provide the versatility for analyzing a wide variety of con-
figurations; the synthesis procedure is developed for the general seventeen-
body idealization shown in Figure 3.1. The user will have the capability
of eliminating selected bodies from this most general arrangement. In
this way many configurations having a lesser number of flexible bodies
may be studied. The most general configuration was selected so that
any combination of five modules could be synthesized; in addition, a con-
figuration with one core module and ten appendages can be studied. For
example, Figure 3.2A i;lustrates a structure with three core modules and
two appendages. Noticevthét Module 16 was moved from its core-module
position in Figure 3;i and is now considered an appendage. To obtain the

the configuration of Figure 3.2B, Module 1l must be considered an appendage.

A computer prbgram was prepared to carry out the synthesis procedure
developed herein. This,program is described in Section 2 of Volume IT,
the User's Manual. _

Although free-free modes are required for Phase II, the program may
also be used ot synthesize the cantilever modes of the structure if it is
held at any point in}Module 1.

One feature of fﬁe synthesis procedure is that the substructure modal
matrices may be supplied in coordinate systems that are not parallel to
the cbordinate‘systemiin which the result, the coupled modes, are obtained.
Accordingly, modules need not be in the same plane. In fact they may be

skewed at any angle in space.

Another feature éf the procedure is that the:user is permitted to
supply constrained supstructure modes. These are modes which were obtained
for idealizations whefe constraints were employed; for example, in a beam
analysis axial extension may have been neglected.' Constraints may be

handled by two differeht methods. In the first, the user supplies modes
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Fig. 3.1 General 17-Module Configuration for Modal Synthesis
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containing six rectangular coordinates for each mass point; however, con-
strained coordinates are either related by equations of constraint or may

be zero. By the second method, the user may supply modes containing less

than six coordinates to describe the motion of each mass point; however,
he must either identify which if any of the six coordinates are zero or
he must supply constraint relations which transform the supplied co-

- ordinates to the six rectangular coordinates. As described in a footnote
in Section 3.3, only certain types of constraint relations may be
supplied.'?This feature was limited by the available computer storage

space.

Capability is not provided to automatically synthesize structures
where appendages are interconnected; however, the user may bypass the
Phase I computer program and supply the normal modes and modal masses of any
Laboratory and/or Counterweight to Phase II. In this way, any Laboratory
or Counterweight with linear elastic properties may be émployed in the

Space-Station study.
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3.2 SELECTION OF SUBSTRUCTURE MODES

Tt is assumed that the normal modes of vibration of each of the sub-

structures have been determined from conventional lumped-parameter
'vibration—analysis procedures. Thus, we assume that we have available, at
the outset, the natural frequencies, mode shapes, generalized masses, and
discrete mass matrices associated with each flexible body. As indicated in
Figure 3.3, if free-free modes of the coupled structure are desired, then
the free-free modes of Module 1 must be supplied; if the cantilevered modes
of the'coupled structure are desired, then the cantilever modes of Module 1
must be supplied.. When obtaining cantilever modes, Module 1 must be fixed
at the same point as the total structure. In either case, cantilevered
modes are used for all other modules. It is assumed that all modes are
orthogonal and that the junction surface between bodies has no deformation.
Substructure mode,shapeS~ﬁay be computed in any convenient coordinate
system, since the program will transform all mode shapes into a common rec-

tangular coordinate systém'priqr to synthesis.

As with any synthesis,technique, the procedures discussed here will
yield an exact'representgfibn of the coupled system if all of the sub-
structure modes are used; In practice, however, each substructure is ap-
proximately represented iy its 1ower-freqﬁency modes. Thus the synthesized
modes are approximate, wifh the lower-frequency modes generally being most
accurate., How well the'éynthesis procedure works is(dependent on how many
modeé are used to repreéept the substructures, and hbw accurately these

substructure modes represbnt the motions of the coupled structure.

| The analyst can exercise some control over the -accuracy of the syn-
thesis through the judicious selection of the substructure modes to be used.
Another means of improving accuracy is to use so-called "mass-loaded" modes.
This means that the mass and inertia properties of all influencing sub-
structures are included"in the preliminary idealization used for obtaining
the modes of a core modgie. For example, referring to Figure 3.3, the modes
of Module 1 would be céiéulated with Module 2 throﬁgh 17 attached as rigid
masses, those of 11 wiph 12 through 17 attached, those of 14 with 15, 16,
and 17 attached, and those of 16 with 17 attached. The modes obtained in

this manner are closerfﬁo those of the coupled system than modes computed
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without mass-loading, and thus produce consistently better results when
used in the synthesis procedure. Since these modes are used only to. .
represent the deformations of the substructure during synthesis, the real

(unloaded) masses are used in the synthesis-problem mass matrix.

Modes obtained from substructures which are idealized with no mass
at fheir outer junction points (see Figure 3.3) yield particularly poor
results unless the mass-loading technique'is employed. This is due to
the fact that mode shapes, calculated with zero mass at an outer junction
point, cannot represent the severe changes in the elastic deformation
pattern induced by the loads and torques which are applied by the attached
substructures,
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3.3 THEORY

The analytical procedure presented in this section may be used to
compute the modal data (natural frequencies, modal masses and mode shapes)
of a structure, given the modal data and physical mass matrices of the
substructures which make up the total structure. The following symbols

are used in this section.

(a. .] The 6n x 6 matrix giving the rigid-body displacements of
each mass point in the ith substructure due to the motion

of its attachment point with substructure j

§ A, j] The 6 x 6 partition of [Ai j] which contains the rows
2 b

corresponding to motions of the attachment point joining

substructures i and k

la ] The 6'x 6 matrix relating { 3 } to {u};
a A point on the + z axis (see Figure 3-4)
[B] Transformation from {€} to {q}
b A point in the first guadrant of the x, z plane, not on

the z axis (see Figure 3-4)

I, J, K Unit vectors in the X, Y, Z directions (see Figure 3-U)
i, 3, k Unit vectors in the x, y, z directions (see Figure 3-l)
[kX] Stiffness matrix for the coupled structure in the global
coordinate system
[ky] Stiffness matrix for the coupled structure in the coordinate
system in which the substructure modes are supplied
[kg] Stiffness matrix for the coupled structure in the {§}
coordinate system
(1)
[mX] The 6n x 6n physical mass matrix in the global coordinate
system for the ith substructure
(i)
[mx ] The 6n x 6n physical mass matrix in the local coordinate

system for the i“" substructure

~
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[mx] Block-diagonal matrix containing all of the [(i;]'s
[mg] Mass matrix in the {€} coordinate system
[Miwi Disgonal matrix of modal stiffness .for the ith substructure
n The number of mass points in a substructure
0 Origin of the local and global coordinate systems (see
Figure 3-4)
{qi, j} The 6n x 1 vector of displacements in the global coordinate

system of mass points in the ith substructure relative to

the attachment point with substructure j

{q. } The 6n x 1 vector of absolute displacements in the global

coordinate system of mass points in the ith substructure

{ q. .} The 6 x 1 partition of {qi j} which contains the motions
s .

of the attachment point joining substructures i and k

{qx } The 6n x 1 vector of physical displacements in the global

~ coordinate system for the ith substructure

{ qx} The 6én x 1 vector of physical displacements in the local
coordinate system for the ith substructure

{ qy} The vector of physical displacements of the i substructure
in the coordinate system in which the substructure modes are
supplied

{qx} Vector containing absolute displacements of all substructures

 in the global coordinate system

fax} Contains*displacement vectors of all substructures relative
to the supports shown in Figure 3-3 in the global coordinate
system

[T ] Constraint matrix for the i~ substructure

T Kinetic energy
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The 6n x 1 vector of rigid-body displacements in the global

coordinate system of mass points in the ith substructure due

.t
to displacements of the attachment point with the j h sub-

structure

th
The 6 x 1 vector of rigid-body displacements of the i
mass point due to attachment point motion

The 6 x 1 vector of attachment point displacement in the

global coordinate system
Me

A vector from point "O' to point "i

A vector normal to the x, z plane

A 3 x 1 vector in the global coordinate system
A 3 x 1 vector in the local coordinate system
Potential energy

Global coordinate system (see Figure 3-4)

Coordinates of point i in the global coordinate system

Local coordinate system (see Figure 3-k4)
4
Coordinates of point i in the local coordinate system

Elements of the 3 x 3 transformation matrix, [a], relating

local to global coordinates

6n x 6n coordinate transformation matrix from local to

global axes for the ith substructure

Transformation from the coordinates in which the substructure

modes are supplied to global coordinate system

Vector of modal displacements for substructure i

Vector containing the substructure modal displacements

for all substructures

Matrix of mode shapes for substructure i in the global

coordinate system
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al ¢i] Partition of [¢i] containing the rows corresponding to
motions of the attachment point joining substructures i

and j

{@}i 1R eigenvector of the coupled System in the global

coordinate system

(1)

[ ¢X] Matrix of mode shapes in the local coordinate system for

fhe ith substructure

(1)

L ¢y] Matrix of mode shapes as supplied for the 1" substructure
.th | . { .

{éi}i i“" eigenvector of the coupled system in the {€} coordinate
system ' ‘
th '

Qi i ecircular frequency of the coupled system

It should be noted that the local and global coordinate systems have

their origins at the base (attachment point) of the module being considered.

3.3.1 Transfdrmation From Local to Global Coordinates for a Typical

Substructure

Since the mode shaﬁés and mass matrices of the éubstructures are in
their own individual "local" coordinate systems, they must be transformed
into a common 'global" coordinate system prior to coupling. The required
transformation matrices ére generated from user-speéified information which
will now be described. The local coordinate system for a typical module
is translated as indicafed in Figure 3,4. Then, for each module, the user
specifies:

mn_ 1

® the X, Y, Z coérdinates of any point "a  on the positive z axes

® the X, Y, Z coordinates of any point "b" in the first quadrant
of the x, z plane (but not on the z axes)

"Point a, of course, fixes the direction of the z axes; however, the x, y
axes may be any axes in the plane perpendicular to z. Point b fixes the

location of the x, z plghe and therefore of the x and y axes.



LOCAL COORDINATE SYSTEM
OF TYPICAL SUBSTRUCTURE
TRANSLATED SO THAT ORIGIN
COINCIDES WITH GLOBAL
COORDINATE SYSTEM

/ z
7~
b

\GLOBAL COORDINATE SYSTEM

Fig. 3.4 Local and Global Coordinate Axes
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The following operations are employed to generate the transformation
matrix from the X, Y, Z to the x, y, z coordinate system. The vector

from point "0" to point "a'" may be written:

\/o z ixq+j—TQ. ""Kza’ i°(-;, + 3:‘0(;; +E °<;3 (3.1)

Since vOa lies along the +z axis, the unit vector k may be obtained by

normalizing vOa to a unit length.

K= T oy + Telza 4 Ky, (3.2)

where

and

2 » x ¢ *?_
CK=JO<3\ ‘\"°<3z “\‘°<33

A vector normal to the x, z plane may be constructed by teking the cross

product of V, and Vob*

VN = X \'/ob-.:

oo

|

1]
(=1

(‘szb_ sza) +3 (Xbia.-)(a,zbS *K-(Ya YD-XbYQ)

e M

Iy, + T A +X Xy, (3.3)
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Since -\_fN lies along the + y axis, the unit vector 3 may be obtained by

normalizing \_IN to a unit length.

A4 Toley + Tty 4 K oy (3.14)

where

xks = XA& /C&

and

1 2
- * * *Z
0—5 - /"(z\ + Ay, +°(2.3

A unit vector along the x axis may be constructed by taking the cross
product of 3 with k.

A = ix}z

I, + I ST lz— O<\3 . (3.5)

1]

The transformation matrix between local and global coordinates may be

written by combining Equations (3.2), (3.4) and (3.5),

A ‘ c<I\| °<\7_ O(\'5 1 (3 6)
4 = K2y Az A2 T )
K Ay Kay,  Aag X

or

I (0(330(21 T X sy d2‘5> + -T (‘°(3\ °<23" ‘3(33°<1\) Y K (KBZO(Z\“O(B\"(BZB



{ut = [4]{»\/} | ]; I

Ay = Ayy Ky, ~Azp0lay ) l Xy = o3, °(ZS.'°(33 Az

Ryg = Lyy ol = Xy oLay

Since Equation (3.7) is an orthogonal transformation, the inverse trans-
formation, may be written

M- [« ew
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Equation (3.8) is the desired result which will now be used to trans-

form the mass point locations from the local to the global coordinate
system. o

R
YJL - [Q( 1 \‘35\ (For A= \.Z..“) (3.9)
Ek ’5&

These global mass point locations will be required in the coupling
analysis.

From Equation (3.7), the transformation between displacements in

the local and global coordinate systems for the ith substructure may be
written as

(0 . (1) WY -
{%XE=L§5H%X§ (5.10)

where

(0 ]
el = h

{ g

(] |
|
i

Rl

is a square matrix of order 6n, and the displacement vectors are made up

of the three translations and three rotations at each mass point.



(1)
A physical mass matrix [ m 1, is supplied for each substructure.

These matrices are in the local coordlnate system and are defined as if

there were six degrees-of-freedom at every mass pointz )They may be
transformed into the global coordinate system using [ 8 ]. The kinetic

energy of the ith substructure is

_‘_= (:L)%.g [(O %(0 «ﬁ | (3.11)

or, making use of Equation (3.10)

S IAGICALS (53 o

 Therefore the mass matrix in the global coordinate system is
() (O (4.\
[mx % . Y | W)

| (1) :
A matrix of mode shapes, [ ¢y]’ is to be supplied for each sub-

structure. For the user's convenience, it will not be necessary to
supply modes with six degrees of freedom at each mass point. . In
addition, to accommodate a wide variety of substructure idéﬁlizations,
it will not be necessary-for‘all of these degrees of freedom to be
parallel to the loqal'coordinate system. For example, the mode shapes
for a plate may inc;ude only the three degfeeseof-freedom at a point
which represent oﬁt"of plane motion. In additibn, the plate may not be
parallel to the 1§éﬁl coordinate system established by the rest of the
substructure. These constraints are due to the idealization employed
in calculating subétructure modes.
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Before the transformation to global coordinates can be made, the
mode shapes are first transformed into the local coordinate system which

has six degrees-of-freedom at a point by use of the constraint matrix,
(1)
[ T ) This maizr:‘).x is defined by the following transformation fx('on)l
i i

displacements { qy} in the user's coordinates to displacements { qx}

in the local rectangular coordinate system:

“tﬂ - 1 T I 5 ’56\\3{ (3.1ka)

Thus,
(ﬂ_‘ (O LT - (W)
Lool =07 1 Lgy

(3.14p)

(1)

[T ] is generally obtained from kinematic considerations. If the

constrained coordinates are parallel to the local coordinate axes, the

[(;)] matrix is simply an identity matrix of order 6n, with thos? Trows

deleted which correspond to degrees-of-freedom not present in [(;i].
(1)

In this case the program will automatically generate the [T ] m&trixg

i
however if the constraints are not parallel to the local axes, the [ T ]
*

matrix describing the constraint must be supplied by the user.

(1)

* In order to utilize less computer core storage space [ T ] is limited
in form to matrices which are block diagonal with sub-constraint
matrices for each mass point on the main diagonal. This restriction
limits the type of constraints that can be considered with this pro-
cedure to cases where the coordinates of a mass point are related.
While the computer program has been restricted as described, the theory
presented herein is more general and can handle constraints which
relate coordinates of different mass

s
points.



The transformation to global cbordinates may now be made.

(4x

and

(A-\

[¢\

where
(D

[vl

319 7

()

‘t ¥ ] g () k

HM“’

(

i&][T]

3.3.2 Substructure Coupling )

(3.15#)

(3.15b)

Now that the substfucturé‘mode shapes and mass metrices have been

transformed into the gldbal coordinate system, the coupling procedure may

be developed.

The equation giving the rigid-body displacements of the ith
point of a substructure due to motions of its attachment point with

substructure j may be written as

EIIRy

14)

=

or, referring to_Figure_3,5,

mass

(3.16)
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()x

Fig. 3.5 Mass Point Displacements Due To Attachment Point Motions
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and the displacements for all of the mass points in the module are,

(\) —, ) A

AL

[8)) ) .
u a *

' = . 5 M-\ :
(lvh ) ‘
2[R

or, for the entire ith .substructure,

gué,;;} - Aig ik (3.17)

3

- To obtain the absolute displa.cements of the i substructure,
- the elastic displacement of the 1th substructure relative to the ,j

substructure must be u.iided to fUi ,j}' The result is
.o 2 -

M* o\ﬁ i% »3% S?U*»gi o (3.18)

Making use of Equation (3.17), this becomes

5%"°)§: S )S [ AA:@] { (é;\@ oi (3.19)

Applying Equstion (3.19) to Substructures 2 through 11 of Figure 3.3
yields: ’ :

{ %‘»% ) 5%‘)‘%‘; [ Ai.\] S%‘L\l;o} For 122,3,... 11 (3.20)
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Applying Equation (3.19) to Substructures 12, 13, and 1k, and making use of
Equation (3.20) (with i = 11), yields:

i%'“’} = % %mnz * [A\z n 5(‘.\. u} [A‘z \){%lo\i (3.21)

where:

[A\2,1] = [A\'z,\\] [ K\\\, l]

i%”’-"E g g%“»"% i [A\'s.u]gg:,.\g 1 [A\a,\] % éb?"i (3.22)

where:

13)
(AB,\] = [L\\‘b.\‘][i\a“»‘l

{%ld,o§= g 4 \\75 [ﬁ\m “]gt\\:ﬁ‘\g *[A\Q,\]%%‘?,ol (3.23)

re: ‘\
where [Am.\l = [ Awm] [‘Aqn,\]

Applying Equation (3.19) to Substructures 15 and 16, and making use of
Equation (3.23), yields:

5 %‘5 °K g%“ N} '\"[[\\5,\\\1 { é:sxz,n} + [ A\s‘\,]{%‘t:\i
+ { A\s,\‘l %\: o\g (3.2k4)



 where:
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| where: [A\g “l [A\s \*}{A*“X
' FUBRIEWRIEW Eh

(ks Tqund + TRl {5t w..la“?,.g
o | ¥ [lm,\] AR . 23)

| %here: - YAW] D e ] LR, N
Uw\l Ia w}&x‘?w\\} Ta]

The application of Enuatlons (3.19) and (3.25) to Substructure 17, ylelds:

{%m,og = 5%1.\&* [AW.M’]{%(‘\.?,\JX *’YA =, + %:‘: “K
+[A . u\ )K N [l\n ‘k { (3.26)

[ A, \*\1 [AI'\ w] { L\? N] |



324

The physical displacements may be written in terms of substructure
modal displacements by making the substitution

[%J = [Q»]{ﬁ?} (3.27)

(1)
where the [ By ] of Equation (3.15b) has been renamed [¢ ] to simplify

the notation. The mode shapes for Substructure 1, [03 ] are free-free
since the absolute displacement, { ql O} is required. Those of Sub-
structures 2 through 17, [QS ]... [¢ ], are computed with the sub-
structures constrained at thelr ,Junctlon points as shown in Figure 3.2,

since motion relative to these junction points is required. Thus,

[%W] = W\]éi.)} (3.28)

and, meking use of Equation (3.27), Equations (3.20) through (3.26)
become:

S{‘ Qf-tc:\{{ = H’x}{{f:& + {A;,\l{&;)\jgfﬂ\ (For % =2.3..1) (3.29)

{%\2\0\% = {q?n:[{ \A\zn_l{g?\ giu\% *{A‘Z,\ﬂ@\]{i% (3.30)

L/"



EI

fawel = Lowl{ga] + [renllE01{E] - (As] 1e}

| + [A ][cb] R | B (3.33)
(oot (ol (ead + [aend (@01 + o[ 8152
Al BlE) o

(gned = Loalead +Danad [0 T} +lana]I82] G
['\1 ][&7 ]{ i [A ][@,Hg& (3.35)
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The nia.ss matrix may now be transformed to the {g} coordinate sy§tem.

The kinetic energy of the coupled system is, ‘ ‘

. L e 5T . f

T= % {44 [MX]S%A (3.37)
where |

3= |

< (W)
L ™x

or, meking use of Equatic.;o.n (3.36)
T=4fe (] [my][B] f¢t - (3.38)

Therefore the mass matrix in the {E} coordinate system may be written
as

Lwg ] E [\3]T[mx][6] - (3-39)
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where
My, *: BL #)SX i)\
Ma = B, #31 B, (For L=2,3...10)
Mu,\\ = *iv B:-n #\)x B'A.;\I ) Mn,.z_ = B:L,\\ %2 12,12
0
My = ng W (‘3) 13,13 ) M\\,N = ::im B::“ “;‘QX Bi'\*
V\\\,\S = B-\rs,n Y%s: 6\5 15 ) Mn,\t‘, = Bup ‘“V' “—lb+ B"' w % B"’-l‘b
My = E>‘l"’1.n W bn.n
m';z.\z = 6\;'\-‘ ‘\;\nx B2
M\‘b 3 T 513\3 \E“B: By
Muw = :2;!-‘4 BA:M mxi .Bi’"} ) Mus = B;,u\» (‘S)x an\s
MN,N— = B‘n-s,\q (MX B\L ‘e B‘,:, m‘('?‘}x \1.\6} MN.'T = Bnm} (“"Rx B
Misis = Brs,xs‘ ‘('f’?( Bisos
Mib,\b = B\Z,\L (\Qx Bur. Vo + Bll‘; e ‘("qz( Bi? l; ) M‘b;"l * B:.u,%)x n,47
F?ﬂn,n = B\}n—.n (‘ﬂ‘ Bn 1 |
W,L BT M By (For AL- 2,3,...10,12,13,1511)
ﬁf"‘ =A£-|-| BI" Qx B“'.)“ .A - z
le,M = Z BT x B ' |
| Pj‘,u, = By, %?m)x ‘5“».\; + By, x‘r’?, B
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It should be noted that, since [Bii] is [¢i], [Mégj through [Mio,lo]’
[Mig, 1213 [Mi3’ 13], and [M15, 15] are the diagonal modal mass matrices

for the respective structures.

The stiffness matrix will now be transformed into the {£} ccordinate

/Yy,
Ix
(3}
57

CRD]
“\‘ >
.
-
o
1Ty
{ o%

"

)

X3

1)

Meking use of Equations (3.15a) and (3.15b), we may write

(3.40a)

(3.40b)
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The potential energy may be written as

Vs (34 T 63 C ew

or, making use of Equation (3.&0&)

3

V= gyl ] 9] By (:42)

Therefore the stiffness matrix in the "y" coordinate system is

Lky) BN UENINS (3.13)

Making use of Equation (3.27), we may write,

3
{

-

SRR -4

A

and, substituting this into Equation (3.41)

v =L (27T WRIeS
v 2 12 Ldxi [*x“_d)"jl‘;g (3-45)
Therefore, the stiffness matrix in the {€} coordinate system is

el Lod Tl L0 (k6
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Substituting [asX] from Equation (3.40b) into Equation (3-46s) yields

(1= Doy T 1] Txa0v 08y ]

(3-k46b)
or, making use of Equation (3.43)
[k]=[¢]T[“< ][@] (3.47)
g b 3 p! '
Therefore the stiffness matrix in the {§} coordinate system is'the
diagonal matrix
- -
THoet |
z
- (M, e; |
A L = -
LoE .. (3.48)
~N 2.—.
Y‘ﬂ\ﬁ 5¥1X

made up of the modal stiffness matrices of the individual modules. It
should be noted that for modules not present, the rows and columns

corresponding to those modules are omitted in [mg] and [kgj, and the
matrices are reduced in size accordingly.
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The eigenvalue problem for the coupled system may be written as

(&g ] { %L = Dmel Wg}; - (3.49)

where [k§] is given by Equation (3.48), and [mg] is given by Equation
(3.39). The eigenvectors are transformed into the global coordinate
system by

g @73 B [6] i %gi | (3.50)

Whenever Substructure 1 is represented by one or more rigid-body modes,
the stiffness matrix of Equation (3.49) will be singular, since it will con-
tain zeros on the diagonal corresponding to these rigid-body modes. This
presents a problem for some eigenvalue algorithms. The singularity may,
however, be easily removed by reducing the order of the pfdblem as will be
shown. Assuming that the rigid body modes are the first modes of module

number 1, Equation (3.49) may be partitioned into

l / : : |
o ' o | ) Mer |
T -c?‘: T IR T 32 (3.51)
o : Kee | { @e. Mee | Mee @c

where the zeros in [kéJ occur since this metrix is diagonal, and the first
diagonal terms are known to vanish. For the elastic modes (szb), the
upper partition of Equation (3.51) may be solved for {ér} in terms of

{ée} after cancelling.Q?. The result is

{‘}w% = -[mvr]-‘ [mt‘e] %ée\g (.FO‘“V’ n#£0)  (3.52)
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while the lower partition yields

{«ee]gée% = ‘Ql([mf‘@]-r {Q‘“g + [W‘ee] {§C’§) (3.53)
(For Q¥ #£06)
Combining, Equations (3.52) and (3.53) yields

el 185 = @ (Dmeed=Tmee] Twnee] " [mee]) Bl 3509
(For Qt#0)

The eigenvalue problem of Equation- (3.5%) has a nonsingular stiffness
matrix. Solution of this eigenvalue problem will yield the elastic
frequencies and mode shapes of the system. The mode shapes may be

transformed by

é" \ - (:\‘ U
(§E?S - —ék\r L 2D Ve {@e\g (3.55)
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1

3.4 NUMERICAL RESULTS

A computer program has been written to perform the calculations

described in the previous section. This program is described in the

User's Manual, Volume II. Various problems including five, nine, and ten-
module configurations have been run to check the program and the synthesis
technique itself. These problems test virtually every part of the program.

Results for the five-module problem are presented in this section.*

Figure 3.6 shows the five module free-free problem, consisting
of modules number 1 through 5 of Figure 3.1. All modules lie in the
X-7 plane and are idealized as beams, connected at the centerline of
Module 1. All twenty-five mass points have six degrees of freedom,
except for mass points 8 and 9 which do not have a degree-of-freedom
in the "X" direction. This is due to the fact that the two members
connecting mass point 8 with mass points 7 and 9 are rigid in the "X
direction, and therefore mass points 8 and 9 are constrained to move
with mass point 7 in that direction. The detailed physical properties
of the core module and the four appended modules are presented in
Appendix F. Mass points 2 and 5 do not appear in the appendix. These

points are massless and are centered between the two surrounding points.

The- eigenvalue problem for the five module structure of Figure 3.6

was solved in the following four ways:

¢ Direct Solution:
To provide a basis for comparison, the problem was first
formulated as if it were a single structure with 148 degrees
of freedom. . The modes and frequencies were then computed

using Grumman's COMAP matrix package.

® Synthesis No. 1:
In Synthesis No. 1, the 20 lower-frequency modes of Module 1,
and the 10 iower-frequency modes of Modules 2 through 5 were used.
Thus, a total’of 60 modes in all were used. These modes were
conventiona15modes rather than the mass-loaded modes discussed

in Section 3.2

¥ Phase I results for the Laboratory configuration (which was used in the
demonstration of the. Phase II computer program described in Section 6) are
presented in Appendix I. Input data and results for the nine-module con-

figuration are presented in Appendices Al and A2 of Volume II, respectively.
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Fig. 3.6 5-Module Check Problem
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® Synthesis No. 2:
The same modes were used as in Synthesis No. 1 for the appendages
(Modules 2 through 5); however, the 20 mass-loaded modes were

used for Module 1.

® Synthesis No. 3:
The same modes were used as in Synthesis No. 2, however an
additional 10 mass-loaded modes were used to represent Module 1.

The total number of modes for all modules is therefore 70.

The frequencies obtained in each of the above runs are presented in
Table 3.1. Comparison of the results of Synthesis No. 1 with those of
the direct solution shows them to be poor. The first frequency is off
by 5%, the fifth is off by 20%, and only a very few frequencies are con-
sidered acceptable. Synthesis No. 2 results are a considerable im-
provement on those of Synthesis No. 1. The first five frequencies
agree with the direct solution to four significant figures, and the first
‘seventeen frequencies are accurate within 1%. This demonstrates the

advantages which may be gained through the use of mass loading.

The first 36 frequencies of Synthesis No. 3 are in agreement with
those of the direct solution to within 1%. The great improvement in
accuracy over Synthesis No. 2 is due to the judicious selection of the
additional ten modes employed in the synthesis. " Since most of the first
36 modes of the coupled structure involve elastic motion of module '
number 1, with Modules'2 through 5 moving rigidly or in their lowest modes,
the use of the additional modes for module number 1 was a logical choice.
In general the analyst should use more modes to represent the more
flexible modules. A further improvement could have been made by using
selected substructure modes, rather than the ten, twenty or thirty loﬁest
frequency modes., |
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TABLE 3-1 FREQUENCY COMPARISON FOR THE
FIVE MODULE CHECK PROBLEM

FREQUENCY - RADTIANS/SEC
MODE DIRECT SYNTHESIS NO. 1 SYNTHESIS NO. 2 SYNTHESIS NO. 3
NO. SOLUTION (60 modes) (60 modes, (70 modes,
mass loading) mass loading)
1 13.67 14.35 13.67 13.67
2 14,02 14.58 14,02 14,02
3 18.37 18.L48 18.38 18.38
L 20.54 28.53 20,54 20.54
5 . 27.76 33.18 27.76 27.76
6 48.54 49,45 48,55 48,54
7 49,86 52.46 49,96 49,87
8 56.64 62.34 56.6L4 56.64
9 63.76 65.19 64.10 63.77
10 68.72 69.26 69.06 63.78
11 71.79 73.49 72.89 71.79
12 84,78 86.01 85.87 84.80
13 97.95 103.4 98.17 97.99
14 106.6 107.4 106.6 106.6
15 109.5 122.7 109.5 109.5
16 125.4 138.0 125.7 125.4
17 125.6 146.9 127.8 125.6
18 134.0 170.5 1hk2.6 134.1
19 139.8 170.6 170.6 139.9
20 141.8 171.8 173.1 141.9
21 147.2 172.9 173.2 147.2
22 170.1 173.7 176.9 170.6
23 172.8 208.7 215.8 172.8
24 172.9 215.8 215.8 173.2
25 173.9 215.8 236.7 173.9
26 17h.4 230.2 236.7 1744
27 176.8 232.0 238.6 176.9
28 178.7 236.6 256.4 178.7
29 180.3 236.6 o264, 2 180.3
30 212.1 243.7 273.6 212.3
31 215.8 255.6 288.5 215.8
32 215.8 268.6 357.4 215.8
33 225.5 357.2 359.0 225.5
34 226.1 358.7 361.7 226.1
35 236.6 359.6 365.1 236.6
36 236.6 384. Y4 383.5 236.6




41

4,0 PHASE II -- DEVELOPMENT OF THE EQUATIONS OF

MOTION FOR THE DYNAMIC SIMULATION

The symbols used in Section 4 are identified below.

SCALAR OR MATRIX
VECTOR FORM FORM
A
A
A,

1
AR
e |
a8
B

a
b,

1

[cM], EEM]
=3 J
Dy {Dk}
=J J
dy £dk}

E, E

S

~

pipe cross-sectional area; also origin

of Xlaxes

origin of Y axes

cm of m.
i

area of reservoir in mi

(subscript); Connecting Structure

connects to gth Counterweight mass Ea

~

cm of m
a
inside radius of reservoir on mi

modal damping matrices for ILaboratory

and Counterweight, respectively

(3)

vector from mk to p 3

same as [Dﬂ} assuming there is no

structural defo;mation

points on Laboratory and Counterweight,
respectively, to which connecting

structure attaches

’ e —
unit vector along u x du



SCALAR OR
VECTOR FORM

~R
e

= ]
5]

MATRIX
FORM

R
{e}]
{e.}

1

{ef}

(£}, {¥;}

{r}, {tr}

(7)), £F§}, (r7)

(£}, F%)

{fM}, [?M}

i
{fs}, {f: }

«
)
2 =
-
A
Laan
—hi
=0
-

e

4-2

unit vector along centerline of reservoir

(1)

in m,
i

toward reservoir-pipe

unit vector tangential to pipe centerline

along nominal direction of fluid velocity

{ei} for pipe section on m, which is

directed from base of reservoir

By .
connected to reservoir on mi. {ei} is

always directed outward from control

(1)

volume

resultant force on m, and Ea’ respectively

structural force on point in m,, or

)

m ,, respectively

(3)(1)

see Equations (4.5), (4.6) and accompa-

nying discussion

(3)

control force on m, or ma, respec-

tively(l)(z)

(1)

(3) (1)

stiffness and démping in modal coordinates

for Laboratory and Counterweight,

respectively

supplementary force on m, or m s
(1)(2) + a

respectively

resultant force applied by Laboratory on

on Connecting Structure at point E; vector

is expressed in z axes.
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SCALAR OR MATRIX
VECTOR FORM FORM
G, {Gi} see Equations (4.26) and (4.27) for the
i
pipe and Equations (L4.L46) and (4.b47) for
the reservoir(l)
th
{Gf} {Gi] for pipe section of i mass con-
taining a reservoir
(s, ) [Pa;)7 L)
hi’ hi height of fluid in reservoir on mi;
© D hi is initial value of hi
o}
’fi [Ii] moment of inertia dyadic (matrix) of
f m, about A.(l) ‘
: 1 i
Ea [E;] moment of inertia dyadic (matrix) of
m_ about B (2)
a a
if [I? ] moment of inertia dyadic (matrix) of

1 1 . . (l)
fluid in mi about Ai

- - -

—fR fP [II;], [I:.If] portions of _ff for reservoir and

reservoir-pipe, respectively

(subscript); Connecting Structure connects

i

~ .th
to i Laboratory mass m,

Ji [Ji] moment of inertia of pipe cross-sectional
area about Ai(l)

2B B = o L

Jj_ [Ji] A Ji at reservoir=pipe intersection with
control surface

*
k subscript denoting the structural mass

mk* that is nearest to the moving point

mass under consideration
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SCALAR OR MATRIX
VECTOR FORM FORM

(L} angular momentum of Space Station
expressed in z‘axes

(v, ] moment of inertia matrix of fluid in
i
reservoir on mi about principal center

of mass axes of fluid; number 3 axis

is along éiR

[l |

{Li} angular momentum of m. and any point
masses and fluid associated with my
about 0; matrix form is expressed in

Z axes

, TR T H {LI;}, {_L};}, {_L;L} contributions to L, of fluid in through
i
pipe on m., in reservoir including
reservoir-pipe on mi, and moving masses

associated with m, respectively

Ea {ia} " angular momentum of Ea about 0; matrix
form is expressed in Z axes
L) 2 index number of mass point on
Laboratory or Counterweight,
respectively, at which structural
loads are required
L, A {1}, {ﬂb} Connecting Structure vector from E to E
expressed in 2 axes; subscript o indicates
undeformed value
[m], [m] mass matrix for Laboraory (not including
fluid or moving point masses) or Counter-
weight, respectively(3)’ (&)
M total mass of Space Station including
fluid and moving point masses
- h
mi, ma it structural mass of Laboratory or ath

structural mass of Counterweight,

respectively



SCALAR OR
VECTOR FORM

f
m,
i
R P
m,, m,
i i
n, n
0
Q
4, 9,
R
R
c
§ —
i’ Ra

MATRIX

FORM
{PE}
Q7
{a.}, {q }
{a}, {aJ
{R}
(R}, (R}
{8R)
{ZCM}
(3, (R}
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mass of fluid on mi

for case of reservoir, contribution to
t 2 . .
mi of reservoir and reservoir-pipe,

respectively

number of structural masses on Laboratory

or Counterweight, respectively
origin of Z axes which are fixed in space

axial tension in Connecting Structure
due to centrifugal force. Vector is

expressed in Z axes

matrix used in obtaining generalized

forces (see Section 4.3.L)

mass flow rate of fluid

deflection of Ai'and Ba’ respectively(3)(h)
vector containing all displacements and
rotations of Laboratory and Counterweight,

respectively

(3)

vector from O to A (see Figure k.1

vector from A to A (see Figure 4.1);
subscript O indicates value when Space

(L)

Station is undeformed
(R} - {Ro}

vector from O to Space Station cm;

matrix form is expressed in Z axes
~

vector from O to Ai or Ba’ respec-

tively(3)(u)



SCALAR OR
VECTOR FORM
I,

1

T

a
S,

1
s¥, s

1 1

S
s

Ti, Ta

77, T, T Y
1 1 1
t
U,

dJ
a
u,, u,, u
1 1 1

(s, 3, (s]
{s}
(s}
{Ti}, {;;}

(T}, (17}, (2}

{tzv }9 {ﬁi' }

{u.}
3

{u}

(il (0], {uf)
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(3)

vector from A to Ai

()

vector from A to Ba

transformation from Fuler angles to

angular velocities (see Appendix B)

first moment of mass of fluid in through

(1)

- pipe on m/ about Ai

-
contribution to Si of reservoir-pipe

and reservoir, respectively

1

vector from origin of zf’axes to E(l)
a

(2)

vector from origin of Y axes to E

i
resultant torgue on mi and ma, respec-

tively(l)(g)

see Equations (4.7), (4.8) and accompa-

nying discussion
time

coordinates of point in m , or ﬁz,,

respectively, at which structural loads

are computed. Vector is expressed
IY zl

inX” orY" axes, respectively

vector from A to uj if Laboratory were

(3)

undeformed

vector to centerline of fluid container

(1)

see Figure 4.6

(1)



SCALAR OR

VECTOR FORM

Y

-
v

=1 =

e

>4

W<

s

1N

ws |

MATRIX
FORM

{vj}

(wj}

(x}

(2 Yo

R

{x~

5
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velocity of fluid in pipe

elastic deflection of moving point mass

(3)

principal cm axes of fluid in reservoir

(3)

vector from A to uj

mean or 'rigid-body" axes moving with

average motion of Laboratory

body axes 1in m, with origin at Ai; when

i=1, m,

~

contains Connecting Structure

attachment point (E)
see Equation (U4.10u4)

mean or "rigid body" axes moving with

average motion of Counterweight

body axes in Ea with origin at Ba;

when a = a, m

~

. contains Connecting

~

Structure attachment point (E)

see Section L.4.2

inertial coofdinate system

coordinate system on E& (with origin at

~~t

E) used for expressing structural loads

applied by Connecting Structure

Euler angles locating Z axes relative

a,
to Y axes (5)



SCALAR OR
VECTOR FORM

D}

a1

MATRIX
FORM
(r( )l
{v}
{6}
(c,)
{n}
(n )
(3
(0.3, {83
1, [K]
[A)

4-8

matrix form of cross-product operator

(see Appendix B)

retioc of modal damping to critical modal

damping for beam Connecting Structure

Fuler angles locati?g K,axes(5) with
(5

respect to % axes

nominal outlet value of ( ) minus nominal

inlet value for through pipe

{2} - {ﬂo}, deflection of Connecting

Structure

Buler angles locating El axes relative

(5)

i
to { axes

Euler angles locating Y axes with
(5)

respect to X axes

(moolf

(- (1]

elastic rotation of m, or Ea’ respec-

(3), (&) *

tively

kinetic energy of Space Station

kinetic energy of all mass associated
with m, (including structural mass, fluid,

and moving point masses) or ma, respectively

modal stiffness matrices for Laboratory

or Counterweight, respectively
mass matrix for Space Station

reduced mass matrix after modal-

constraint reduction



SCALAR OR

VECTOR FORM

J
M

13

sHJ

MATRIX

FORM
W], (5]
(8}, (€]
(&}, (5,
[n( )]

(3, (783

{Tb }, {;% }
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welighting coefficient proportional to
the influence of m, on the motion of
Mj (see Equation (4.65))

modal mass matrix for Laboratory and

Counterweight, respectively

mass of jth moving point mass

modal coordinates for Laboratory and

Counterweight, respectively

see Equation (4.108)

see Equation (L.64)

coordinate transformation where name

of Euler-angle set is inserted in ( )(5)

i, jth element of [II ( )]

mass density of fluid

sum over all mk's influencing the

motion of uj

control torque on m, or m, about Ai or

(1)(2)

Ba’ respectively

structural torque on point in

m,, or 57?, respectively (3)(4)



SCATAR OR

VECTOR FORM

el

€1
mEll

MATRIX
FORM

(), (73]

(8], [3]

(s], [g]

{¢"}

[w']
i
{wX }: {'J.) }

1], [1r]
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torque of supplementary forces on

m, or m_about A, or B, respec-
i a i a

tively(l)’ (2)
resultant torque applied by Laboratory
on Connecting Structure at point E;

vector is expressed in z axes

fluid control volume

modal matrices for Laboratory and Counter-

(3), (1)

weight

see Equations (4.109), (4.110), and
(4.112)

Euler angles expressing deformation of

Connecting Structure (m:.L relative to

- )(5)

Z axes

~

(3)

angular velocity of X axes

()

angular velocity of Y axes

angular velocity of X~ or Y* axes,

(1),(2) ~

respectively

identity matrix or r x r identity

matrix, respectively

derivative of vector measured in

rotating X axes

derivative of vector measured in body

axes (ﬁlor zé axes)

derivative of vector measured in

inertially fixed (spatial) coordinate

system



Footnotes for Symbols

(1)

(2)

(3)

()

(5)

The matrix form is expressed in the Z} axes for the symbol pertaining
to the Laboratory

The matrix form is expressed in the Zé axes for the symbol pertaining
to the Counterweight

The matrix form is expressed in the X axes for the symbol pertaining
to the Laboratory

The matrix form is expressed in the Y axes for the symbol pertaining
to the Counterweight

See Appendix B for order of rotations
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Figure 4.1 illustrates the general idealized configuration considered
herein. The equations of motion are written for an arbitrary number¥ of
lumped masses on both the Laboratory and the Counterweight and the posi-
tion and orientation of these masses is also arbitrary. The rotatory

inertia of these structural mass points is included.

At the user's option, fluid in motion may or may not be present on
the Laboratory. If fluid is present, any two Laboratory structural masses
maey be specified as containing reservoirs, one nominally emptying and the
other nominally filling. As illustrated in Figure 4,24, a pipe which con-
nects these reservoirs passes through a number of user-designated inter-
mediate masses. (Only two intermediate masses are shown in the diagram
for the sake of illustration.) The pipe section which passes through a
particular mass is called a through pipe; the pipe segment on a mass which

is connected to a reservoir is called a reservoir pipe.

The Laboratory also contains an arbitrary number of moving mass
points which represent elevators, crew motion, etc. The rotatory inertia
of these masses is neglected since they are assumed to be small relative
to the Laboratory. All moving masses move relative to the Laboratory
along paths prescribed by the user. The deformation of these paths due

to structural vibration is included in the analysis.

The Counterweight does not contain fluids or moving masses.

¥ TFor numerical limitations in the computer program see Section 3.5 of
Volume IT
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Fig. 4.1 ldealization and Coordinate Systems
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Note: Only two intermediate masses containing
through pipes are shown; however, the
analysis was done for an arbitrary number

of masses 4
RESERVOIR
RESERVOIR NOMINALLY
NOMINALLY FILLING

EMPTYING

THROUGH PIPE

(A) Undeformed System

CONTROL VOLUMES ARE FIXED
TO STRUCTURAL MASSES

(B) Deformed System

ontiol-Volume idealization Used for Computing
Rates of Change of Linear and Angular Momenta



4-15

4,1 ASSUMPTIONS USED IN THE FORMULATION

For reference, a list of the assumptions used in the formulation is

presented below:

h.1.1 Laboratory and Counterweight Structure

® FElastic motion within the Laboratory and Counterweight is
assumed small and is linearized. However, the large rigid-
body portion of the motion of these structures is not line-
arized; neither is the elastic motion of the Laboratory

relative to the Counterweight

® Flastic motion of the Laboratory and the Counterweight is, in
general, represented by a truncated number of non-rotating mode
shapes of each body. The modes are assumed to be orthogonal;
therefore equél-frequency mode shapes must be orthogonalized

before use

® Damping is assumed to be a percentage of the non-rotating
critical demping in each mode. The user may specify differ-

ent percentages for each mode

4,1.2 Connecting Structure

The structural properties of the connecting structure are coded in
a subroutine so that the user may easily replace the connecting structure.
The subroutine supplied for program demonstration purposes contains a math

model of a tubular beam with the following properties:
® linear structural properties

® The stiffening effects of tension due to centrifugal force are

included

® The beam length is variable to simulate Counterweight deploy-
ment and retraction. The undeformed beam length is a variable
function of time which is specified by a user-supplied sub-
routine. The subroutine supplied with this report is described

in Section 5
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4.1.3 Structural Coordinate Systems (See Figure U4.1)%

In the Phase II computations the local coordinate systemslzé that
are fixed in structural masses m:.L in the Laboratory, the rigid-body
coordinateslﬁ for the Laboratory, the local coordinate systems Xé that
are fixed in structural masses ﬁa in the Counterweight, and the rigid-
body coordinates Y for the Counterweight are assumed to be parallel
when the entire Space Station is undeformed; however, for convenience,
the Y, and Y, axes are in the negative X, and X,* directions, respec -

2 2 2 2
tively, and the Y, and Y ® axes are in the regative X, and X a directions,

respectively, Thgse assimptions do not limit the genzrality3of the
program since the user can always set up the problem using coordinate
systems that are oriented as described above. 1In fact, the user can
supply input data into the Phase I (Modal-Synthesis) program in terms

of coordinates that are not parallel, and Phase I can be used to auto-
matically supply results to Phase II in terms of coordinates that are in

the required directions.
4.,1.4% Fluid

® Fluid flow in both the pipe and the reservoir is uniform; i,e.,
the cross-sectional velocity profile is a straight line rather
than a parabola or more complex shape. A bladder or piston is
assumed to confine the fluid within each reservoir so that
(1) sloshing does not occur and (2) the fluid height within the

reservoir is a well-defined quantity
® The fluid is incompressible

® For the purpose of computing the rate of change of linear and
angular momentum of the fluid, it is assumed that each control
volume has the rigid-body motion of the associated mass point,
and the control volumes touch at the boundary points when there
is no deformation. This approximation gives rise to the incon-
sistency that the pipe is discontinuous when the Laboratory is
undeformed (see Figure 4.2B)., However, for the purpose of com-
puting the structural loads contributed by the pipe, the pipe is
assumed to deform.

* See Sections 4.2 and L.3.2 for additional discussions of these coordinate
systems during deformation.
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These effects are included in the stiffness and damping

matrices

® A structural mass cannot contain more than one through pipe

nor can it contain both a through pipe and a reservoir

e Fluid velocity as a function of time is specified by a sub-
routine which may be easily replaced by the user. The curve
shown in Figure 5.5 has been coded in the subroutine provided

under this contract. This curve is discussed in Section 5.3.2

® The pipe is assumed to always be full, If a reservoir empties,
the fluid velocity is set to zero and the specified velocity

function is disregarded
e The pipe is assumed to be of constant area

e FEach reservoir is a right circular cylinder, and the pipe axis

is tangent to the cylinder axes at the reservoir entrance

4,1.5 Moving Point Masses

® Rotatory inertia is neglected

® The motion is a user-specified function of time which is coded
in a subroutine so that it méy be easily changed. The function
shown in Figures 5.3 and 5.4 has been programmed in the subroutine
provided under this contract. This function is discussed in
Section 5.3.1.

e Since the mass moves along the elastic structure, the portion of
its motion due to deformation has been estimated and added to
the pre-specified rigid-body motion, When the moving mass is
located between structural masses its motion is obtained as the
weighted average of up to sixteen surrounding masses. The average
is weighted $0 that as the moving mass approaches a structural
mass mode point, its position and velocity approach that of the

structural mass., The closer the distance to the structural mass,
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the more the motion of that mass is counted in the averaging

process. The details are described in Section 4.2.3

The acceleration terms in the equations for the moving point
masses are always evaluated late in time by one numerical-
integration time step. At t = O, these terms are set to zero.
As discussed in Section 4.3.2, this approximation results in a

considerable savings in computer core storage space.
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4,2 DEVELOPMENT OF THE EQUATIONS OF MOTION IN- VECTOR FORM

The coordinate systems used and the vectors which locate these
coordinate systems are illustrated in Figure 4,1, The g,coordinates
(with axes Zq5 Z2, and Z3) are a set of inertially fixed axes with their
origin located at any convenient point in space. Thelz coordinates are
the ﬁean, or "rigid-body" axes of the Laboratory and move with the aver-
age motion of the laboratory as it flexes and moves through space. The
position of these axes will be more accurately defined in Section L.3.4.
Similarly, the Y axes are the mean axes for the Counterweight. Each
structural mass ms in the Laboratory has its cm at A, 5 and A is also
the origin of the body coordinates X which are flxed in m, . The cor-
responding terms used for a typical Counterweight mass p01nt 6& are Ba

and z?, respectively.

For clarity, a portion of Figure 4.1 is shown in Figure 4.3, and
some additional detail has been included. From the geometry of this

figure, for a mass located on the Laboratory,

.p;'. = f-z + -;" + %,‘ (4.1)

If ordinary dotted derivatives are measured in the X coordinate system
which rotates at ® and dotted derivatives used with the superscript "s"

denote derivatives measured in an inertial or "spatial"” coordinate system,

l_;" = ?" = o | i (,4-.2)
:E > ’ - - > >
R: = R +€;"+a)x Ry 5 R, =R + 43 (.3)

.«-')' = > ->» Y -~ - nd >
F.= R + i; + 20l X h + W x(W xR
i

)+ B xR, (b.4)

In writing Equations (4.3) and (4.4) we have anticipated that the com-
ponents of ﬁ will be projected along the rotating X axes.
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CM OF m; NOT INCLUDING
FLUID OR MOVING MASSES

Ai IN UNDEFORMED STATE FIXED IN X AXIS

2|

fi =—————CONSTANT VECTOR IN X AXES

Fig. 4.3 Typical Mass on the Laboratory
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The resultant force on my is

.5 -5 - '
- - . .
Fo= 4 (J (R + U )dm) (4.5)
t f _S'
d S,

where the "SY" indicates that the integration and differentiation applies
to the fixed system of mass particles located on m, at time t, and the
subscript "S" indicates that the derivative is measured in an inertial

coordinate system. Equation (4.5) is broken up as follows:
' > - ! ’
F.Z. = Em ; F.§ + £ (11-6)

-
where Fim denotes the contribution of the rigid structural mass m, to
-+ f
the right side of Equation (L.5), F.  denotes the contribution of the
- :
fluid on m,, and Fiu denotes the contribution of the moving point masses

associated with m,.
i

The equation for the torque about point Ai is treated similarly.

Again referring to Figure 4.3:

.r S dy
F oo TR ED A
! S,
or
s J Jo/ )
= = 7 odm \x R+ + — 2 x olni
T = (L,, u a/n>XvR, Tt (sz < ()

The terms on the right side of Equation (4,7) are broken up into their

contributions due to rigid mass, fluid, and moving point-masses as follows:

‘7’-; = “12,.'"3 + T+ T, | | (4.8)

The various cohtributions in Equation (4.6) and (4.8) will be com-
puted separately in the subsections which follow and will be combined in

Section 4.3 where the equations are converted to matrix form,
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4,2.1 Structural Mass on laboratory

Evaluation of the right sides of Equations (4.5) and (4.7) for the

rigid mass m. is straightforward. The results are

PP
> m ~a
F,oo=m; R, (1.9)
and
- = -?— .t = ~
TrM=T. o, +w;x I -w; (k.10)

. e aa . . . . . i
where the circle indicates a derivative which is measured in the X

coordinate system.

N

4h.2.2 Fluid Motion in the Laboratory

When evaluating the derivatives in Equations (4.5) and (L.7) for the
fluid, the effect of mass transfer through the boundary of m, must be
accounted for. A suitable expression for accomplishing this is derived
in Appendix A and the result is summarized below. As indicated in Appen -
dix A the control volume for the fluid associated with m, is assumed to
be fixed relative to m, . Th%s assumption is discussed in Section 4.1.3,
Consider any vector quantity Q that is a quantity per unit mass of the

fluid. For example a may be the linear momentum of a particle of mass
| dm, The total contribution of a to the mass present within the control

volume at a fixed time is

G = Todm = J ardv (1.11)
=

Sy

As time varies, the boundary of this system of particles changes so
that it will no longer coincide with the control-volume boundary. The
problem of differentiating Equation (4.11) is complicated by the fact
that the control volume moves in space since it is located on a

spinning, vibrating space station. It is shown in Appendix A that the
inertial derivative of G is
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) 2 U Q/Oc/V) § 527'013 (4.12)

where cv indicates that the integral is computed over the time-varying
quantity of fluid preseht within the contfél volume, cs designates the
control surface, or control-volume boundary, 3 is the velocity of fluid
relative to the control surface measured in rotating axis fixed relative
to the control volume, and dA is the differential control-surface area
multiplied by the outward unit-normal vector. The last integral in
Equation (4.12) is the contribution, to the derivative, of fluid passing
through the control volume.

Equations (4.11) and (L4.12) are now used to evaluate the contribution
of the fluid to the derivative on the righf side of Equation (4.5)., Set-
ting dm = pdv, the result is

’ _a/ cv s cs
where
+ 5 - —3 -/
n = Vv + W x U (4. 14)

o Equation (4.14) is substituted into Equation (h.l3); and the integration -
is partially carried through. In performing this step, it is noted that
the control surface is pierced at most twice (case of a through pipe) or
only once (case of a regervoir). Also, the flow is assumed incompressible
(so that p is constant)-and uniform (so that ¥ is constant over the pipe

cross-sectional area). In addition
—b”-' B -
j;,(’V.JA)'—'UVA

Boundﬂry N
where u is the value of u' at the cg of A (that is, at the point where

the pipe centerline intersects the boundary) and A is cross-sectional

area of the pipe. The result of the above manipulations is
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A;;. > ->
A2 Q +L/A(Gl€’t) +wl'XA(au;)
where mif is the total mass of the fluid in m,, A indicates the change in
the quantity from the nominal pipe inlet (inlet with V > 0) to the

nominal pipe outlet*, and Q is the mass flow rate, i.e.,

Q=PVA; Q =rva (4.16)
and

- ..I
S‘. = f U PO/U (4.17)
cv

Next, Equation (4.11) and (4.12) are applied to evaluate the deriva-
tive on the right side of Equation (4.7) for the case of the fluid.

Similar manipulations to those employed in obtaining Equation (4.15) yield

1e 8

753 xR .f._gl_(J 3%V dnt +j 2 x(aw. x ;(”)p/l')/)
P 1 ! O(t cv Cv '3

O R R AL
‘cs s (4.18)

In the following sections, Equations (4,15) and (4.18) will be evalu-
ated for the three possible cases (see Figure 4.2A): a mass containing a
through pipe, & mass containing an emptying reservoir, and a mass contain-

ing a filling reservoir.

*E.g., M = Qout - Qin For the case of a mass containing a reservoir
which is nominally emptying Qin would be set to zero since there is no

inlet pipe piercing the associated control volume,
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4.2.2.1 Through Pipe

Equations (4.15) and (L.18) are evalusted for the case a mass con-

taining a through pipe. The following assumptions are employed:
® The pipe has a constant cross secfion
® The fluid is incompressible
L] V is uniform over the pipe cross section

Using the notation illustrated in Figure L4.L, the terms in Equation (4.15)

are evaluated as follows:

J

<

ved U = VJ ét.kA d s = A VA] AU =»QAZ7;. (+.19)
v v cVv

where s is the arc length of the pipe centerline. Since the fluid is
incompressible and the pipe is always full, the flow out is equal to the
flow in and A Q = O. Using this fact and Equation (4.19), Equation (L4.15)
yields

) - vQaé) (1 20)

+ f D + P
where F, has been renamed F, to denote that Equation (4.20) represents

+ f
Fi for the case of a through pipe.

—

S. is a constant vector defined by Equation (L4.17) which expresses
the fi;st moment of mass of the fluid in the through pipe. It is computed
in terms of its componehts along the {} axes by multiplying the mass of
the fluid in the through pipe by the vector from Ai:to the em of this

fluid, or, alternatively, :

é’i:fj j QoA ds = _/’Af q ol s* (4.21)
s “A s ‘

where the fact has been used that the centerline of the pipe is also the

locus of the cross-sectional area c.g.; i.e.,

f :"75/4 = U A (4.22)

A

* This expression involves an approximation if the control surface
intersects the end of the pipe obliquely; however, the %naccuracy is
very small for the usual case where the inner diameter is small

compared with the pipe length.
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NOMINAL
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(FORV >0)

NOMINAL
INLET (FOR V > 0)

Fig. 4.4 Mass Containing a Through Pipe
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-+ i -+
Now u is expressed in terms of its components along the zl axes (u =

ini ini ini . .
O D O X3 ey ), so that Equation (L4.17) yields
~> l' A ’4 I‘ A " [' A I. S ()4.23)
S, =S5,e' +5, €, *+35; €
where

e . ('
S\ = PA )(.’o/s=/ - XJ'-”/"’ (4 24)
pire Y PIpE

Next the terms in the torque equation, Equation (L4.18), are evaluated.

Using Equation (4.22),

7

f/ 7/7/[7«:/"? :/ 77/)" ?//2/=,/0V/ f 'Z;/"'é\t 0/14;/5
' S ‘A '

4.
d v nominal
, ) oo tlet
. > A Yy - P ’?
=/L/]/f U /4 X e f/S r:,-"kﬂf 71*/"‘
S A nowinil
’41‘151
or, using Equation (L.16)
n«:’m/.ha[
oarfed :
s ~ . g -
>, 4 S > e
j U x VoA = Q] U x;v/.b{ = QG{- (4.25)
CV ﬂu"f‘(’“’ﬂ/
inf=?
where
‘ﬂ(?l_’rlc"ﬂ‘l/
outfet
e
g. aj 7z x d i (L. 26)
! ﬂ(’l’lv}(ﬁ/ .
- ‘nle?

Gi is a constant which is a characteristic of the fluid in the through
_’
pipe. It can be evaluated either by expanding u into components or by noting,

_'
from Figure 4.5, that Gi is the following function of the area A_ swept out

N p
by u:
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Fig. 4.5 Expression Required for the Evaluation of Ei
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nomina

outlet
G.= 7 é dA, (4.27)

nominal
A tale?
where ey is the unit normal vector which is perpendicular to the plane of

-+ - -+ -+
u and d@ and directed along u x du. When the surface swept out by u is
a plane,‘g; is constant and the evaluation of Equation (4.27) is particu-

larly simple.

The next integral to be evaluated in Equation (4.18) is
>y - A-,I 7 f:f‘ -
f T (D T )dm = 1,74, (4.28)
cv

E
where Iif is the moment of inertis dyadic of the fluid about point Ai‘

The next integrals needed are

b Tx VP AR = V/V/ 2y 6, A —V/v/ ox e, AA
jis | €3 ¢s

out

Vs a(Txé,) =Qracis x )
= : : 2 (4.29)
and
-, - " 3 -»> -y ~» -y /"
Wx(WD - x )PV A4 = A[/Vj U x (P x U )/Ahj
cs : ¢5
l 7\ -+
where dA_ = e - dA., The above equation is expressed as follows:
- — -, - ’/-b ’ = -
e X(W,'X U )PV e = /V(A J,') W, (k.30)
cs
where
= -,,2:‘; - @y A
J s-f (U E -w ¢ )o/An (4.31)
S
- -

-5 -5
In Equation (4,31), E is the unit dyadic. J is the moment of inertia dyadic
of the control surface area component which is projected perpendicular to 3

as indicated in the sketch below.
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inner F/fc surfice
N\ dA
dA A

n e >

\J>-£——-->—V

‘\,/con‘t‘ro/' sur{ace

Equations (4.25), (4.28), (4.29) and (L.30) are now substituted into

the torque relation, Equation (4.18), and the indicated differentiation is

performed. The result is:

37 3 -°> - -> > —
?') - ?.f: ;. Xé,‘ + I:fca_) -+~ w.X(QGI. +I’+. w.)
i ' { ! ] ; 4 1 !
- (4.32)
i — i -> A,
*’/V(AJ;)-WI: +Q6‘—;+QVA(L(I'X€*)

- -
where TiP denotes the value of Tif for the case of a through pipe.

L.2.2.2 Reservoir Nominally Emptying (For V > 0)

The derivations of this section will be done for the reservoir which
is nominally emptying (for V > 0), The results for the reservoir which is
nominally filling will be obtained frpm the final expressions by replacing
V with -V, The reservoir (shown nominally emptying) is illustrated in
Figure 4.6. It is assumed to be cylindrical with radius b, and to have a

bladder or piston which confines the fluid so that the fluid height hi is a
well-defined quantity.

The terms required for Equation (4.15) are now evaluated. Proceeding
as in Equation (4.19) '

Ie -
J FrAALY = Qau; (4.33)
7
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RESERVOIR-PIPE i

DEFINITION OF
Ay, FOR CASE
OF RESERVOIR

(A) RESERVOIR WITH ASSOCIATED PIPE SECTION

NOTE: W AXES ARE PRINCIPAL
AXES OF THE RESERVOIR FLUID
WITH ORIGIN AT CM OF
RESERVOIR FLUID

- (B) DETAIL OF RESERVOIR

Fig. 4.6 Structural Mass Containing a Reservoir
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_’ .
where A uy is the time-varying vector illustrated in Figure 4,64 for the
_.
case of the reservoir. To compute A Uss the flow rate in the reservoir

is equated to the flow rate in the pipe; thus

R, e
Q=rVA= PV A.
R R . ‘3 . .
where Vi and Ai are the reservoir-fluid's velocity and the reservoir
cross-sectional area, respectively. From the above expression

V K - - félli = V/ _f£1 (4.34)

A

" At A

I
Integrating,

J v At (4.35)

AR

where hi is the initial fluid height. The velocity of the fluid in the
o]
pipe, V, is a function of time which is specified by the user in a sub-

routine., If either reservoir empties, it is assumed that the pump shuts
off; thus, the subroutine providing V is disregarded, and V is set to zero.
For this reason the case of a partially empty pipe is not considered. From

the geometry of Figure 4.6,

Py R “f/'; 2’ (4.36)

A 3. is now expressed in terms of input data, (ﬁi , HiR, and é.R) and
the quantlty h which the computer evaluates by using Equation (4.35).
gi is written in terms of the constant portion S g’ for the fluld in the
pipe section shown in Figure L, 6, and the varlable portion S R for the

reservoir as follows:

S, = 3; =35, (4.37)

+ P
Si is evaluated in accordance with Equations (4.23) and (4.24) for the

fluid in the pipe section, and, proceeding as in Equation (4.21),
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=R

h-
R S
S, =A,-/0j uds
o

4 o
From Figure L4.6B, u R

N :
=u," - (n; - s) &% This quantity is substituted
into the above equation; and the integration is carried out. The result
is
< >pr . A
- L, R R ! R
S. =5 + mfut-shoel) (14.38)
I ! ( / L ! /
where miR is the mass of the fluid in the reservoir; i.e.,
e oaf . (4.39)
1, ,1;‘/0 A’

For future reference, it is noted that the total fluid mass on m, is

m T = ni" o+ oni " (Lk.40)

P v
where m, 1is the mass of fluid in the pipe.

Equation 4+.33) is now sub-
stituted into Equation (h.lS), and the differentiation is carried out.
The result is

= > £ “—‘; .4 5
F,R.,-,»/~ = pi ! /QI' + 8 R: 7 (QA.L’ - a U -
' I} ‘ /
-") 2
- > i ~> -> prig = o P
+G(,<_,'/.XAZ.{/' # _f,vaS/' FuWoxo s WX /"/J'-"é)
/ /
_..;; " W N s B i
+~ QR +FdVeEeT + 0. xU

- + f
where Fi has been used to denote Fi for the case of a reservoir, Some

of the terms appearing in the above equation are evaluated as follows:
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mf=-Q (b.h1)

Using Equations (4.36) and (4.34),

5> A AR
A u , - — —— e . ()'I‘.hg)
! Af /
Equations (4.38), (L4.39), (L.34) and (L4.16) yield,
—o’ XN A
S.=-Qf-h.ef) (4.43)

Fquations (4.41) to (L4.L43) and (4.36) are substituted into the above
relation for ?iR and the result is

4

-> £ ”—D' > - g ;* .
£rR- FT= ;77/* R--S,xw, +Q au,

A ' AL - :, ) LI-.)-I-)—L)
+Qv7qf—§?e;)+20wﬂna¢l (
. g
* ZZZ-IY(/00,~)( :)/')

where the terms required in Equation (U4.4h) are computed using Equations

(4.36), (4.35), (4.38), (4.39) and (L.ko).

Next, the terms in the torque equation, Equation (4.18) will be
developed for the reservoir which is nominally emptying. By proceeding

in the manner used to obtain Equation (M.QS), we obtain

/ - > >

/ 2
J w'xvVddnm = Q . (k.L5)
cv !
where (with R representing the reservoir and P the pipe section shown in
Figure 4.6)

G. =6" +6 (4.46)

with

Qv
n

i ) o ’ -

‘ /ux» A .=_j S A7 (1.47)
1]

.
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EiP is a constant characteristic of the reservoir pipe which may be com-
puted by epplying Equation (4.27) for the pipe section and then supplied
as input data, however G R is a variable requiring further evaluation.

Expressing u in accordance with Figure 4.6B, Equation (L4.47) yields

- > A
= f [af-(h -s)EfTxé5ds f ufxefus
R

R
or
R e A .

Gf=ulxéfh. (1.18)

The next term is
f (w x %) dm = 1"-:*57 (4.49)

where

_{-2* f’? +f" (4.50)

4

' -+
The fluid moment of inertia dyadic Iip is input data; however the value
for the reservoir IiR is a variable which requires further evaluation.
This is more conveniently done using matrix forms and therefore will be

done later in Section 4.3.1, The next integrals required are

éz?'x 7/7-/A’=_ V/VJ&')( é\t/A=&V_Z/.3x é\'/,s (4.51)
cs ouf
and
f if’x(Z/:‘x ;')/ 17-4'/4* =/VJ'.SI°;'. (4.52)
cs
3B

_’ .

_’
where J;~ is the value of J; given by Equation (4.31) at the pipe outlet
(point B of Figure L.6A). Substitution of Equations (4.h5), (4.49), (k.51),
and (4.52) into Equation (4.18) and carrying out the differentiation yields
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>R
+ ay[{}l.‘?,y 2 - L ulfxe; ) (4.53)

R will also be

H440

-+
As was the case with IiR, the required expression for

developed in Section L.3.1.

4.2.2.3 Reservoir Nominally Filling (For V > O)

The required relationships are obtained from the results of the pre-
vious section, Equations (L4.4h) and (4.53) where the subsidiary relations
which define required terms are Equations (4.35), (L4.36), (4.38), (4.39),
(4.%0), (L.46), (L.47), (L.48) and (L4.50). To obtain the results for the
reservoir which is nominally filling, V, Q, and Q are replaced by -V, -Q,
and 4@, respectively, wherever they appear in these equations. When the
équations are converted to matrix form, in Section 4.3.1, this is accomplished
by placing a parameter ki in front of vV, Q and Q in the reservoir equations
and setting ki = +1 for the case where the reservoir is nominally emptying and

ki ==]1 for the case where the reservoir is nominally filling.



4-37

4,2.3 Moving Point Mass on laboratory

Moving point masses on the Laboratory may be used to represent crew
motion, elevators, balance masses, etc. The motion of a typical mass
'y is composed of a pre-spesified function of time aj(t) relative to the
Laboratory and a component v due to ela:ﬁic deflection (see Figure L.7).
The vector to uJ from the cm Ak of the k Labo?atory structural mass m
is dk when the laboratory is undeformed and D J when the deformations are

k
considered. From the geometry of Figure 4.7,

R4 = R+ W, (4.5k)
F4=F . -’1 + O x :' | | | (1.55)
;f’“'-fz‘s ﬁ/; iﬁx;:-+o'3x/ab’xp-1;')+2;)’x 171/; (4.56)
where
:, = U-(#) + D-; (4.57)
ﬁ/; = :;'{:t)f V:’ . (4.58)
W,; = (L/;-(:f)+ 17; (4.59)
,./;’. = f/; (zf) - r, (4.60)
Since }’k is constant in the X coordinate system,
:[/': [j’ (1) (4.61)
F 4
;/:li' = [/; (¥) (4.62)

In order to rigoréusly express the structural loads on each by it

"would be necessary to derive stiffness and damping matrices that are
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MOVING POINT MASS
DEFLECTION OF B
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UNDEFORMED POSITION OF v,
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UNDERFORMED POSITION OF

MEAN AXIS H; IN X'AXES

FOR LABORATORY

INERTIAL
COORDINATES

Fig. 4.7 Position of Moving Point Mass on Laboratory
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functions of the variable positions of each ”j' In addition, as a moving
mass approaches a structural mass, certain coefficients in these matrices
would approach infinity. For example, if the deflection of each m, were
held at zero, the load applied to “j that is needed to produce a unit de-
flection of “j would approach infinity as uj approached any m, . This load
is a diagonal term in the stiffness matrix. For these reasons, the fol-
lowing s1mp11flcatlons are introduced in the determination of the elastic
motion of the mov1ng masses. First, the elastic deflection vJ and its
derivatives v'J and vJ are computed as if uJ were mov1ng on & rigid struc-

tural mass m, which is near u,. Different values of vJ, vJ, and VJ can

— e

be obtained depending on whicﬂ neighboring structural mass o is used, and
the values used in th&s analysis will be a weighted average of the respec-
tive 33'5, ;j's, and 3j's obtained above. Then, using these average

values, the dynamic terms, the contribution to the right sides of Equations
(4.5) and (4.7), are computed and added to the dynamic terms for the nearest
structural mass. In this way the inertia forces applied by the moving

masses to the structure are approximately accounted for.

To obtain the reqﬁired averages, first assume that uj moves along
a single rigid mass mk (or its imaginary exten31on) Slnce mk 1s rigid,

-+
referring to Figure L. 7, within linear terms D I dk + 6 X dk where

k

é is the angular deflection of m relative to the X axes. Then, from
the geometry' of Figure h 7, ‘

- I - -p d’}.

Différentiating and substituting Equations (4.61) and (L4.62) yields

= 2 5 0/44-5)((7-
V;‘ﬁ*-/e"’ﬁ 3 4

and
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Next, instead of assuming that uj moves, along a single mass, it is
desired to include the influence of many of the surrounding structural
masses. Weighting functions x J (which will later be deflned prec1sely)
are introduced for this purpose It is assumed that vJ 3j’ and vJ
are given by the following weighted sum of the above values which were

obtained by considering only a single mass:

\
-5 iy (fﬁ+9X7/)
F 2
N N |
= A 40, a4 +0,x ;) > (4.63)
v} ”Z, k[fﬁ gﬁ # K J (
‘> il g : > - IR -~ A
v 2 A lg, +6, x4, 429, xU/ + 95, x /. !
! u "n * }%k # # <4 J ~ J / .)
J
where % denotes the sum over all structural masses mk that influence

e

the motion of Uy In practice, these mk's are selected by the program user.
As time progresses, and uj moves into different regions, the user may

specify different set of mk's.

A formula for the ka 's will now be specified such that the ka 's
obey the following properties:

(a) A9 >0
k
U»J- 3
(b)) = A =1
e
(c) ka -+ 0 whenever any d'zJ + 0 (4 # k) where dzJ = | d£j|
aka .
(d) Yij -+ O whenever any dﬂ/J 2+ 0 for all .j, k, and £ and any X-
o dr ~

fnd -» A
axis component U of Uj (Uj =U,,%e, +U +

/\
JL 1 7 Yie %2
J3 3)
Properties (a) and (b) were selected so that the total motion v1
given by Equation (4.63) is the sum of the percentages of the rigid-body

motion of all the mk s$; i.e., property (a) states that each percentage must

be positive, and property (b) states that the total of all of the percentages
is 100%.
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Property (c) guarantees that ;j’ 3j’ and 35 approach the rigid-body
values associated with m whenever ., approaches any o . This follows
from the fact that in addition to A, J =+ 0 (k # 4), by property (b) Ay I s 1.
Since the A J's which will be selected are continuous well-behaved functlons of
Gj’ the closer uj is to any s the more influence m will have on the mo-

tion of uj.

Property (d) assures the following: If the deformations ak and gk
of all mk's were held fixed, and uj were moved towards the cm Ak of an
m s then, in addition to the deflection, the tangent of the path of Wjs
as defined by Equation (4.63), should approximate the tangent of the true path
under the prescribed structural deformations. This requires that as uj
moves toward the cm of a particular m ., say mg, the contributions to the differ-
ential vector tangent to the approximate and exact paths must approach each

other; i.e.,

2 (3.2 2 (3 +2 .3 4 |
a—TJ;r(U{ +V7)aluar_’ 3U(U1."+ 3—"+ O % 6(/ )O(Ud'r

sdi=0 (r=1,223)
where ﬁj + qz +'é X dz is the path of u as if uJ moved on the rigid
body’m This relatlon will be true if

-, °
J
.(r://z)z)
Property (d) guarantees the above relation, since Equation (L4.63) yields

—
2V e 2 ( + 6
7 Yy 7’ o

M, "3(?7+@'xa7‘{) “y 3L~ > 77
LA/ S YRRt 7 i AL e R ol TR A LT AD)
2 (/J.r mﬂ ko c u’a-r, . »” 2 Ua‘r

(r:/lz,_?)

and when dz? - o xza 1, A 3 30 for k # L, and d \ J/a U -+ 0 for

all k; thus, o v /B U approaches the rigid-body value as requlred

Functions for kkJ wﬁich have the desired properties (a-d) are now

constructed as follows, First we form

T = T4 (Lf) (1.64)

3 m,

Lt b
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j\2
where the T on the right denotes the product of the (dﬂa) for all masses
m, that influence the motion of uj, however (d J) is excluded from this
product. nkJ already has properties (a) and (c). In order to guarantee

property (b), we define KkJ such that

L TTﬁ? for niore 5 +or (4.65)
’A'; = +A-qn o B Aﬁ =/ 2405 i, ’
d AL - 4 ) k 7
A J J
j% /C/
«£

Property (d) can be verified by differentiation. The reason for squaring
(a J) s in Equation (L4.6L4) was to arrive at A J's that would satisfy

Jq

Property (a). Using only the first power of the d s would however

satisfy Properties (a-c).

One inconsistency in the approx1matlons used in Equation (L4.63)
is that since the KkJ's are varlables, vJ and vJ cannot be obtained
exactly by differentiating v. and Vj, respectively. However, because
of property (d), the differentiated and defined values do approach each

other whenever uj approaches any mk.

The rate of change of linear momentum of K. may now be computed as

J
™=y ;‘)’(’/I.
/_ . j o ({, /Q o ()','.66)
% T
g . -
where R is given by Equation (4.56) with Wj and its derivatives given

by Equations (4.57) to (k.59), using Equations (4.63) to (4.65). The
subscript k* has the following meaning. In the matrix computation scheme
described in Section 4.3.2, FkiJ is determined for each u., and the result
contributes to the dynamic terms (Equation (4.5)) for the nearest influen-
cing m. . It is this value of i that is denoted by k*. For simplicity, the
nearest influencing m mk* is actually dgtermined for the underformed
ve@lcle; i.e., the’ m w1th the smallest diJ (or equivalently the largest
WiJ) is considered to be nearest. In this process of adding Fk* j into
Equation (4.5), more than one by may contrlbute towards a particular F

and the total of these contributions is the F Hoof Equation (4.6).

Referring to Figure 4.7, the contribution of s to the dynamic terms

d
on the right side of the torgue eguation, Equation {(&.7), i
-, by ,
] > >,
R VA G (4.67)
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where

Sy - o~ - s
D/Q’-"’ _Wl' T A fkf ' (4.68)

N “',j : -

and R is determined by using the same equations as were used for
obtaining Equation (4.66). As was the case for ?i“', more than one .
may contribute towards fi’ and the total of these contributions is
the _'fiu of Equation (L4.8).

J
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4.2.4 Structural Mass on Counterweight

For the counterweight, Newton's equation and Euler's equation are
written for each mass point in a straightforward manner. Taking the ath
counterweight mass point as typical,

- =
F o=, R, (4.69)
5

where Ra is the vector from point O to point By in Figure 4.1. The Euler

equation is

= o =
= —_ = > = = ,
7, = Lyow, +W, xT,-w, (k.70)

where the circle indicates that the derivaetive is measured in the Ya

~

coordinate system. From the geometry of Figure L.1,

il

- - -
R4=R+§+a+fa (k.71)

-
Expressions for the derivatives of ﬁa’ for use in Equation (4.69), are

expressed in the proper coordinate system, and the results have been
incorporated into the relations of Appendix C where the equations are

presented in matrix form,
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4.,2.5 Subsidiary Relations

The program will, on command, print the anguiar momentum vector
about point O (the origin of the inertial reference axes Z), the total-
system kinetic energy, and the location of the total-system center of

mass. These quantities are developed below.

4.2.5.1 Angular Momentum About Point O

Referring to Figure 4,3, the angular momentum associated with

a typical mass m, on the Laboratory is

/(R +u )x//? +u ) a/m (4.72)

L= Lr+7 L2  om

where the. superscripts m, f, and y denote the contributions to the. .
right side of Equation (4.72) of the structural mass m , the fluid on m,,

and the moving point masses associated with'mi, respectively.

For a rigid mass point on the Laboratory, Equation (L.72) pro-

vides the classical result: .$
: —
- pt P
L.”= T, w + 77, R X/? | (4.7h)

For thé fluid on m,, Equation (4.14) is substituted into Equa-
tion (4.72) and the indicated multiplication is carried out. After
substituting Equation (4.17), the result is

S -

- - > -5
L. = md."_‘»k;x ,?" +—R,-xj‘ Vol m + KX (,a-;.xb?-,)
: 4

A

.S ’ ‘
> > -y > - - = 4 .
+ S, x R, + j U x Volm +/ U x (i, x U ) ae
: cv : cv (k.75)
For the case of a through pipe, Equations (L.19), (L.25), and
(4.28) are substituted into Equation (L4.75) and the result is
,S '

" F s m IR B s B xtm T
L7 =mPRxR vk QR xau,; + R x(w xS )

i

+ 5. xR + k.06 +I7 0, (1.76)
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where ki = + 1 and the parameters in the above relation are given by

the equations of Section 4.2.2.1,

For the case of a reservoir which is nominally emptying Equa-
tions (4.33), (4.45), and (4.49) are substituted into Equation (L4.75).
Again, Equation (L.76) with ki = + 1 is obtained; however for this
case the pareameters mif, &Ei’ §£, Ei, and If are defined by the

relations of Section 4.2.2.2.

For the case of a reservoir which is nominally filling, Equation
(4.76) is once again obtained except that k, must now be set to -1.
The equations for the parameters are identical to those for the empty-

ing reservoir given in Section 4.2.2.2.
For a moving point mass uj’ the angular momentum sbout point O

is ;g

-l et

L ’ - . ’ X

A R R (4.77)
.8

where ﬁ HJ ang ﬁ uj are computed using the relations of Section

4,2.3.

For a structural mass ﬁa on the Counterweight, the angular

momentum about point O is .S
>  F > - = =
L= LTeaw, + myRa x Ry (4.78)

In the program, the contributions of each structural mass
on the Laboratory and the Counterweight, of all fluid, and all moving
point masses are totaled to arrive at the system angular momentum T
about point O. In practice, it is never necessary to campute

-+ -
Liu since the IYj's are totaled separately.

4.2.5.2 Kinetic Energy

The kinetic energy of a structural mass on the ILaboratory is

— ’s
m_ - = > A . 2 L
Ky =g, Low +t7 7, K. (4.79)

Referring to Figure 4.3, the kinetic energy of the fluid present
on m, is
i S s

.S e
$ gl -> /. 2
K, =2—' (R. +u ) o me
cv

where the second power is used to indicate the dot product of the vector
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with itself. Substitution of Equation (4.14) and subsequent use of

Equation (4.17) yields

¥

. ’S .5 .
-» - >
K, =5"MJ-5'R4-2+ k:-'(lVVc/m +;J/.x 5;) _+_2~' f el
: cv

L, > > - s iy
+2—’£«Zf wix(w, xu’)dm *Wx‘f o x Voot
For the case of the through pipe, Equations (4.19), (4.25), and

(4.28) are substituted into Equation (4.80), and the result is
.s

> 2 r 3 3 >
K /c = —I- 'f [R4 tV ) * z “, 'IA' ’ aj_i (4.81a)

. - -
+~<9 W, é? + @if: (ZZEWx S, +da L(;.)'

where the parameters of the above relation are given by the equations
" of Section 4.2.2.1.

For the case of a reservoir which is naminally emptying, Equa-

tions (4.33), (k.34), (L.45), and (k.B9) are substituted into Equation
(4.80), and the result is

4: A \27 ' _
ekt e e () TV e

: S :
4 : ] . . L R . » N
+ F w, '.jf;. W+ A%‘ Q. -G, +R, (w, x S, +-1é. dau, )
where ki = + 1 and the parameters of the above relation are given by

the equations of Section 4.2.2.2.

For the case of a reservoir which is nominally filling, Equation
(4.81b) is again obtained; however, k, must be set to -1

The kinetic energy of a typical moving point mass is simply

My /x, . (4.82)
K5 = 5 u, (R#)*
ghere the relations of Section 4.2.3 are to be used in obtaining

R J
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The kinetic energy of a structural mass on the Counterweight

is
— > F - , — = 2
K= s Iw +39.(R) (.83)

In the program, the contributions of each structural mass on the
Laboratory and the Counterweight, of all fluid, and all moving point

masses are totalléd to arrive at the system kinetic energy K.

4.,2.5.3 Location of Space-Station Center of Mass

The location of the Space-Station center of mass is
. o~
B = L f,q oA e (4.81)
< M

where ﬁ; and R are measured from point O, the origin of the Z axis.
The evaluation of the contributions to Equation (4.84) of the various

masses is straightforward and the results are summarized in the table

below:
Contribution to R dm
Type of Mass Contribution
Structural Mass on Laboratory m, ﬁ;
(m, )
i
. f = -
Fluid on m, m, R. + 8,
i i i i
Moving Point Mass =By
we R
J
Structural Mass on Counter- - =
. m R
welight a ‘a

The total contribution for all masses on the Space Station is computed
in accordance with the above table. In the program these contributions

are totalled for use in the matrix form of Equation (L4.84).
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4.3 MATRIX FORM OF EQUATIONS OF MOTION

The equations of motion developed in Section 4.2 will be con-
verted to matrix form se that they can be programmed. To facilitate
this cohversion‘task, a special notation has been developed which is
presented in Appendix B. In addition, some helpful identities were

used, and these are also presented in Appendix B.

4.3.1 Inertia Matrix for Reservoir Fluid

Before-the equations of motion are converted, it is necessary
to develop expres31ons for the moment of inertia of tge fluid present
in a reservoir I and its derivative in the Xl axes T . These ex-
pressions are developed at this point, because the matrix identities
developed in Appendix B greatly facilitate this work. As shown in
Figure 4.6, the H? axes are the principal axes for the reservoir fluid
with their origin at the fluid center of mass. W% is along the symme-
try axis of the cylinder. Let the moment-of-inertia matrix about the

W axes be [Li]. Then [Li]_is diagonal, and its diagonal elements are

A‘ - A’ - R i 3 Il 2
L“ - Li‘2 =y (‘f b.c. * 12 I’)"- ) (4.85)
4: - R z
L33 = 2 7’)”] ; b ;
By using Equation (B18), the moment of inertia matrix of the reservoir
fluid about the Xl axes is

[1]]- [TT(K)] fL LTI -mf[r(w, )] (1.86)

where :i is the set of Euler angles orienting the WS axes with respect
to the Xi axes,* and from Figure 4.6,

iu § = fult - l;:- [TT(}A.)]T{ e, 4 (4.87)

T

with {e3} =[0 0 17, and with {uic} and {uiR} expressed in the X'

axes. The elements of the matrix [IiR] are the required components of

3R .
the dyedic I, expressed in the X' axes.

To obtain IiR, Equation (4.86) is differentiated and the re-

- e s wm wm me e o e =

* Since the reservoir is cyllndrlcal with the W, axes along the cylinder

3

axis (see Figure U4.6), C. i3 is arbltrary. For s1mp11c1ty it is taken as

zero, [I (g )] may then be computed as a function of e (see Step 16 of
Appendix C).
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[EF1= [mespT LLALT)] + £, [r(wf)]1

- Wlf[f‘(l:(f )][F(uj)] -mf [r’(u‘f)][['(d‘?)] (4.88)

where ki = + 1 for the case of the reservoir which is nominally
emptying and -1 for the reservoir which is nominally filling, and

[ii] and {ﬁic} are obtained below. [ii] is diagonal, and the diagonal
elements are obtained by differentiating Equations (4.85) and substi-
tuting Equations (4.39), (4.41), (4.34), and (4.16) into the results.
This yields |

Lu = L;z_ = --llf-_'k“ Q(b“'z‘f"’l;-)
(4.88a)

Li,= -4 k. Qb

Differentiating Equation (4.87), and substituting Equation (4.34) into
the result yields

Jufl = k;v S [T(3)] 164 (1.59)

4.3.2 Coordinate Systems and Conversion of Dynamic Equations to Matrix
Form

The coordinate systems used were discussed to some extent in
Section 4.2 and are shown in Figure 4.l1. When there is no deformation
of any sort, each E? coordinate system is parallel to the E’coordinates
and each X? coordinate system is parallel to the X‘coordinates. In the
undeformed state the Y, and Y_ axes are in the minus X2 and X

2 3 3
respectively. In general, when the system is deformed, the Euler angle

directions,
sets orienting the coordinate systems are as follows:
X with respect to 2 : vy

X with respect to X : 8, (linear)

Y with respect to X

13

Y* with respect to Y : © o (Linear)
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These Euler-angle sets are indicated in parentheses on Figure 4.1
next to the vectors separating the origins of the corresponding coordin-
ate systems. The order of rotation for a typical Euier angle set is

described in Appendix B.

The matrix form of the vectors used in Figure L.l contains the
components of the vectors projected onto the coordinate systems indi-

cated below:

Mgtrix Form Coordinate System'
®), {r,} g} X
R}, {r,}1{q,} Y

As indicated above, the notation used for the matrix form is usually
similar;to that which was used for the vector form. For the complete
correspondence of notation see the symbol list at the beginning of
Section L. Henceforth, the three Euler angle components will be

written in the vector braces (e.g., Y= 1.

The elastic deformations of {ql} and {e } of the Laboratory,
and {q } and {e } of the Counterweight will be linearized; however
large deformations of the Connecting Structure are permitted. Ac-
cordingly, the variations in {R} and {7} could be large, and these
variations are not linearized. However, these quantities are usually
composed of a large nominal value and a much smaller variation as

indicated below:
fR} = {R,} + {aR}
Syb=mried +{y*}

where {el} =[1 0 o0 jT.

i

(4.90)

The vector equations of motion'of Section 4.2 are now converted
into matrix form using the relation of Appendix B. There is one matrix
force equation and one matrix torque equation, (a total of six equiva-
lent scalar equations), for each of the n structural masses 6n the Labor-
atory and for each of the n structural masses on the Counterweight. 1In

addition to the 6 (n + n) variables {q_l}, [el} (i=1,...,n) and [(ia}, {éa}
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(a =1,..., n) , the 12 varisbles {R}, {v¥}, {#R}, and {1} will appear
in the equations; therefore there will be 12 more variables than equa-
tions of motion. However, there are 12 conditions yet to be specified;
viz, the relations that locate the mean axes X and Y. The force
equation for each Laboratory mass m, is writt;n in t~he }£ coordinate
system, and the force equation for each Counterweight mass fﬁa is written
in the Z‘ coordinate system. However, the torque equations are written
in the local coordinate systems )’5‘1 and f’ for m, and r?xa, respectively.
The matrix equations corresponding to the vector equations of Section

4,2 are listed below, and a discussion of the details concerning these

equations will follow.

Structural Mass on i.aboratory

Newton: X 1feF+[M137+ il ? s 7= 1577 (k.91)
iler: [N Ko7+ L1857 +f5i 7= 77 (4.92)
Through Pipe

Newton: DA 1387+ Dy 7+ DT 7 i T8 7 55 5671 (4.93)
miler: Oy 127 + D350+ Dy Tt B Tsagwssid =777 (b.9b)

Reservoir : Emptying (k = 1) or Filling (k =-1)
Newton: [i; J5£ 7+ J3g: fr DA TP+ DG B § #5535 F = 7FFF (1.95)

miler: Dy E ¢ +D T Fr D10t B 195 1558 = STF (4.96)

Moving Point Mass
) . 0. d TR X 4. :
Newton: [ n¥JER} +[(°N)’Jffﬁ;} +l(x3)#]fw ™} + [(r "‘/{J {Sk,f

+{snty = {Fﬂ,‘ﬁg (4.97)

Euler: o, C el L T
LrsIIiR Y + [(er5) 8] £ Fir $ ¢ [r7)¥1 w0t + [(«8)¥ 50 o5

+iB2)Y 5T (5.98)

Structural Mass on Counterweight

Newton: [N 1527 + e Tho™F - Dy st » D5 1
DSBS DRRE (=56 (4.99)



milers Gy Ho’fr DRTE ] « 550§ 57 (1.100)

In the above equations the force equations have been labeled .
"Newton" and the torque equations have been labeled "Euler." The
coefficients and lower derivative terms are defined in the tables of App-
endix C. Various secondary computations are also required to obtain terms

which appear in the definition of these matrices and to obtain related in-

formation such as kinetic energy, Table 4.1 serves as a guide ﬁo the
conversion of the equations from vector to matrix fdrm, and a similar
guide to the seéondary equations is presented in Table 4.2, In addition;
various geametrical and kinematical relations are required and are

listed in Appendix C. These relations are easily derived by applica-
tion of the equations of Appendix B to the geometry indicated in

Figure 4.1. In addition, Appendix C includes other relations which

will be derived in future sections, for example, the equations required
to transform the initial conditions from a form which is convenient

for the program user, to the form required for computation.

For the following reasons, additional approx1mations were made in the
derivitation of Equations (L4.97) and (4.98). When Equations (4.91-L.100)
are combined as indicated by Equations (4.6) and (4.8), to obtain the
~equa.tions of motion for the system, the acceleration-coefficient matrix
would be relatively sparse (i.e., contain mostly zeros) if no moving point
masses were present. However, since the elastic motion of the moving
point masses can be influenced by the motion of any étructural mass on the
Laboratory, the moving point masses can cause nonzero terms to appear in
the acceleratioh coefficients associated with every Laboratory variable.

The sparseness of the acceleration-coefficient matrix isihowever very useful.
in saving computer storage space since space must only be reserved for non-
zero blocks in this matirx. Because elastic motion of the moving point’
masses has only been approximately evaluated, it was decided that it was
worthwhile to make a further approximation to conserve the‘sparSeness of
the‘accelération-coefficient matrix. At first, all acceleration terms
sttributable to moving masses were written on the right side of the equations
of motion and evaluated one time-step back; however, th1s caused numerlcal-

integration instabilities, and this technique was therefore abandoned.
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Instead, second derivative terms associated with the_[&k}'s and {§k}'s were

eveluated only at the mass point mk* which is nearest to “j and xi* was
set to 1. These acceleration terms were previously averaged over all mk's
which influenced uj. The lower-derivative gcceleration terms (coriolis
and centrifugal) are still averaged. This approximation maintains the
sparsehess of the acceleration-coefficient matrix, and accordingly makes

possible the saving of considerable computer-storsge space.

The loads appearing on the right side of Equations (4.91-4.100)
are accumulsatéd and projected onto the proper coordinate system in
Equations (37-39) of Appendix C. These include loads applied to the
* @)

E

*
Counterweight by the Connecting Structure {fE] end { ; loads

applied by the control-system actuators {f%}, [Té}, {fg}, and {;Ca}(z);

and supplementary loads [fi}, {Ti}, [F:} and {?:]. These supplementary
loads may represent any excitation which the user may desire, to incor-
proate (for example, environmental disturbances). They are currently
set to zero; however to incorporate supplementary loads, the user would
program the sppropriate load functions in a subroutine. Structural
loads which are internal to the Laboratory or Counterweight are includ-

(3)

ed later in modal-coordinate form.

(1) These loads are discussed in Section 4.4.2.
(2) These loads are discussed in Section 5.

(3) These loads are discussed in Section L.k.1.



Equation Number

Matrix Form Vector Form
. Struc;ura,l Mass on Laﬁ)rator? :
49l kg
Lo - L.10
Through Pipe
4.93 ‘ - 4.20
4.9k o , 4.3
5 | Reservoir
4.95 o (1)
4.96 . b.53()
| Moving Point Mass
bt ' ~ o b66
4.98 k.67
; Structural Mass on Counterweight
4.99 - | 4,69

%4.100 ‘ 4.70

(1) Vector equations are for a reservoir which is nominally emptying.
See Section 4.2.2.3 to adjust for a reservoir which is nominally
£illing.

Table 4.1 Guide +to the Conversion of the Main Equations from
Vector to Matrix Form
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Table 4.2 Guide to the Conversion of the Secondary

Equations From Vector to Matrix Form

Vector or Equation Number
Scalar
~ Symbol Appendix C
&
, Structural Mass on Laboratory
i? A18
m
fy Al9
Through Pipe
Q Q Sa, 5b
§; input data
Ei input data
?; input data
R 22
i i
P
ks A23
Reservoir
hi 7
-B =R =R
u;s U, e
input data
- =p
Si s Ii
S, 12
i
R hif
m,", m 9, 10
-
A u, 11
-oPl
Gi input data
G 1
i 3
3
Iif 16 with 14 and 15
TR A20
1
k R A21
i
AR
I, 19 with 17 and 18
Moving Point Masses
.’ 20
W 23
. a
:p
W, 23b
J TABLE CONTINUED ON NEXT PAGE

Section L4

b7l
4.79

4,16
4.21, or k.23 and h4.24
4.26 and k.27

L.31
)4.76
4.81a

.35(%)

4.38

4.39, L.ko
4.36
b by

4,46 with 4,48

4,50 with 4.86 using 4.85
and 4.87

seme as L.76
4.81b
4.88 with 4.88a and 4.89

4.60

k.57 with 4.63
4,58 with 4.63

(1) This equation is for a reservoir which is nominally emptying. See
Section 4.2.2.3 to adjust for a reservoir which is nominally filling.




4-57

Vector or Equation Number
Scalar : _ .
Symbol A Appendix C Section U4

Moving Point Masses (Continued)

L% o A2l b7

K9 | 25 4.82
Structural Mass on Counterweight

-5

L, 526 | 4,78

Ko A27 4.83

Table 4.2 (Continued) Guide to the Conversion of the Secondary
: Equations from Vector to Matrix Fomm
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4.3.3 Combined Equations of Motion for Entire System

Equations (4.91) - (4.100) are combined in accordance with the
scheme indicated by Equations (4.6) and (4.8) to obtain the equations

of motion for the entire system. The result is of the form

[A]{k.f = {5} + {0'} (4.101)

where [A] is the mass matrix, {ﬁ} represents the acceleration

terms, {f} is the force vector (containing both forces and torques), and
{o} contains the lower derivative dynamic terms. Specifically, [A]

is given by Equation (36) of Appendix C, {f} contains the indicated

3-element vectors,
r

p

“n oee

>

A

(k.102)

A~
ey
o/
1]
G
]

'
v
"
i
|
[

> e Py.“pq,lv v jons
(3

”
\

the lower-derivative terms are
)

4

fa (4.103)
{ot=qir

@A
N4

Ll
L ]
L.J

and {xf is defined as follows:

( 5"] (4.104)
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where {q] and {E} are the elastic coordinaste vectors of the laboratory
and Counterweight, respectively; vis.

g =
# '
A A
(pl= J R I P (4.105)
Fn #x
';G"J ;éﬁJ

4.3.4 Modal-Constraint Reduction Procedure

In order to accommodate detailed elements such as solar panels,

many structural masses are needed in the idealization. Thus, Equations

(4,101) are quite 1arge in size, and the solutions are likely to contain

high-frequency contributions. Direct solution would therefore require a

very small numerical-integration step size, and, in addition, large
matrices would have to be inverted. To make matters worse, the physical
time for mesneuvers such as deployment and spin-up is very large relative
to the short periods of vibration associated with elastic motion. In
order to reduce the size of the equations in an automatic and orderly
way, thereby alleviating these problems, two basic methods will be used
viz, the modal-reductlon method and the cons%ralnt-reductlon method " These
closely related methods are explalned in Appendlx D, and the procedure to be
procedure to be used is summarized below.,

First, {6n } is defined as the vector containing the three virtual

differential rotations about each axis of the X coordlnate system. {ﬁx}

is known as the quasi coordinate corresponding to [w } [Sn is similarly

Then the virtual work is computed

defined for the X‘coordlnate system.
In this way, the [Q]

and placed in the form given by Equation (D24).

matrix is obtained. The procedure is greatly simplified by varying only

one virtual displacement at a time, computing the corresponding work, and

then adding the results.

The. final result of the virtual work computation is the matrix [Q]
which is presented in Appendix C as Equation (45) (where the required
terms are defined by Equations (44) and (4Sa - 45c)).

1f modes are used for the reduction, the Laboratory and Counter-

weight elastic coordinates are represented as follows:
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41 LE1FY, () <L§14FF o

where [3] and [5] contain the elastic free-free modes of the Laboratory
and Counterweight, respectively; i.e., the rigid-body modes are removed.
At first it was planned to fix the X and Y coordinate system in a key
mass of the Laboratory and Counterweight, respectively, and to use canti-
lever modes in [&] and [3] which would be obtained by fixing the key
masses, In addition to the modal coordinates, the physical coordinates
of these key masses would be employed. It was then, however, determined
that high-frequency components could be present in the numerical integra-
tion solution. These high frequencies are associated with the motion

of the key masses which is described by use of physical coordinates. TFor
this reason it was decided to use the more involved procedure of employ-

ing free-free modes,

The number of masses used in the Laboratory and Counterweight are n
and ﬁ, respectively, and the respective number of modes are p and 5;
theréfore the dimensions of [Q] and [5] are n x pand n x 5, respectively.
The coordinates are now related to & reduced set of coordinates by employ -
ing the following modal-constraint relations:

jsxy =[@]f651 ix3t = (#1851 (k.107)

where

7 3\
$ R
st
5 3
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(4.108)
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and [¢] is an appropriate const;aint matrix that relates the coordinates

{6x} to the reduced coordinates {68p}. When the modes given by

Equation (4.106) are used to represent the Laboratory and Counter-
weight and when the Connecting Structure is flexible, [¢] has the

following value:

6 p 6 p ~——dimensions
R T R B4
[' ]l I ! é (4.1
- +—- .109)
| .

— 4=t —
|[@]| en

[¢] = T . o T
’ | le] ¢

where‘[l6] is the 6 x 6 identity matrix. Equation (4.107) now has the

effect of substifuting modal coordinates for the elastic motion while
duplicating the rigid-body coordinates. [¢] always contains 12 +

6 (n + n) rows; however the number of columns used depends on the con-
straints. If all structures are flexible, [¢] contains 12 + p + p
modes. The main constraints which the user may select and the corres-
ponding forms of the [¢] matrices and the {éT} vectors are indicated

below:

A, Rigid Laboratory

: This constraint may be used in combination with the rigid Counter-
weight. Equation (4.109) is applicable; however p, which is the width
of (8] and the height of {E} shrinks to zero. I.e., ‘

6 6

_ | | P . _
[;6 | ¢ (4.110)
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B. Rigid Counterweight

Equation (4.109) is applicable; however p which is the width of
(2] and the height of {€} shrinks to zero.

C. Rigid Vehicle

The Laboratory, the Counterweight, and the Connect ing Structure are
- rigid, i.e., there is no elastic motion, however the Connecting Structure

is still capable of extension and retraction. For this case,

(k.112)
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= X vehicle

{; ‘ R rigid o (4.113)
i

In addition to the above constraints, the program user may include
other constraints. by supplying modes which obey these constraints in {@} and
[8]. For example, elastic motion in a particular direction could be

eliminated by this method.

The final steps are to form the reduced mass matrix:

(a]=[7][Ql[A)LO]
and thé reducgd right-side Yector:

LA [ﬁ} [Q]({f} +{6§) (4.115)

In Equation (h.ll5), it is not necéssary to include the forces of con-
straint in {f}; Finally the desired reduced equations of motion are

formed as follows:

[A:1{%} = 17} | (126

Equation (h 116) is solved for {gT}, and {gT} and then integrated
once.* Some of the components of the result, namely {R}, {£1, {AR},
and {g}, may be integrated again to obtain the displacements; however,

auxiliary expressions are needed to obtain {v} and {1*} from {wx} and

{wY} in order to determine the Euler angles by integration. Suitable
relationships were derived using the theory of Appendix B, and the
results are Equations (A17) of Appendix C.

* [Ag] is & symmetric matrix. This fact can be advantageously used,

“since more rapid solutlon schemes are available for symmetric

matrlces, also, less storage is requlred for [AR]
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Tnitially, values of (£}, (£}, (€}, and {£} must be obtained from
the corresponding values of {q}, {a}, {q}, and {q}. Equations (4.106)
cannot be inverted since the modal matrices are not square; however,
a method of obtaining the modal coordinates which provides a best fit
approximation, in a certain sense, to Equations (4.106) is established in
Appendix D, and the results are Equations (D30) to (D33).

4.3.5 Adjustment of Input Data

In accordance with Equation (4.106) the elastic free-free modes of
the Laboratory and the Counterweight are used to represent the elastic
motion of the respective structures. It is well known that the linear
and angular momentum of each mode shape vanishes. Since the elastic
coordinates [qi} and {Qi} are a linear combination of the modes, it
follows that the linear and angular momentum of the elastic coordinates

must also vanish; i.e., for the Laboratory

o
z, 7oigt =0 (a0
<=

g ({z;156,4 + m,.[r'(r/.)]{?ﬂ.})z 0 (4.118)

£z

The analesgous relationships for the Counterweight may be obtained by
simply placing a bar over each symbol of Equations (4.117) and (L.118).
Equations (4.117) and (4.118) indicate that the flexible-body coordinates
{q} are & dependent set of coordinates. This fact was already used in

the previous section. A physical interpretation of these equations is
that they serve to locate the mean or "rigid-body" axes (E’axes) rela-
tive to the Laboratory. For exemple, using Equation (h.ll?), the distance
from the origin of the z'axes to the cm of the Laboratory structure* is

> m; (fr:} + fg;}) = ;';IL > 7 {r, s

|
ML A=y i1

* The structure referred to does not include the moving masses or fluids.
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where ML is the. total Laboratony mass. This distance is seen to be &
constant; therefore Equation (4.117) serves to locate the origin of the

X axes relative to the deformed structure. Similarly, Equation (4.118)
‘serves to fix the angular position of the Z'axes relative to the struc-
ture. The details of the computation of the angular position are‘provided
in Appendix E since it will be seen that this computation is needed at

t = 0.

The set of initial conditions {q} and {q} should actually obey
Equations (4.117), (4.118) and their derivatives; however, in order to
avoid burdening the user, it is permissible to supply input data relative
to any coordinate system zf which is near 5, The computer program will
automatically determine the location of the X axes and will compute the
initial conditions relative to the X axes. .The new initial conditions
satisfy Equatiqns (4,117), (4.118) and their.derivatives, and are suitable
for initializing the numéricalfintegration procedure. 'The.derivation,for
this step is presented in Appendix E, and the results have been incorporated

into the‘computation procedure presented in Appendix C.

;The procedure described in the above paragraph is also carried out for

the counterweight.
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L, 4., STRUCTURAL FORCES

4.h,1, Iaboratory and Counterweight Structure

From Equations (k.115) and (4,116), the reduced set of Equations

of motion are

[a i, f = W]T[@]Gﬂwfﬁ&xf?+§°‘?) (4.119)

where {f} has been written as the sum of the forces applied by the
Laboratory and Counterweight structures {fint} (not including forces
applied by the Connecting Structure) and the balance of the forces
{fext} which includes the external forces and forces applied by the
connecting structure. From Equation (D25a) of Appendix D, it is clear
that

it Z%e,,'—' E‘pft@lfﬁwg (4.120)

i#exf}}gnz [¢]T [@]‘f#exfz (k.121)

where {fin

to the generalized forces associated with {513. {f

t}gen and {fext}gen are the contributions of {fint} and {fext}
int} is next parti-
tioned into forces applied to the Laboratory and forces applied to the
Counterweight as follows:

¥antL
Himl—% - ﬂmi}; (k. 122)

Substitution of Equation (L45) of Appendix C and Equations (4.109) and
(k.122) into Equation (4.,120) yields the following equation which applies

when all structures are flexible:
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o
’C\ 5 [§ ]T [_QL] y)mtl_ F
? '”f}gen - 0 all structures (k.123)

flexible

[ @ ]T [Qc—_wﬁn_tc?

where the zeros were obtained by realizing that these terms are the
generalized forces corresponding to {R}, {y}. {AR} and {ﬂ*}; i.e.,

the generalized forces corresponding to {R}.and {AR} are the resultant
forces on the entire Space Station and Counterweight, respectively; the
generalized force corresponding to y is the resultant torque of all forces
applied to the entire Space Station about point O on Figure h.l;:and the
generalized force corresponding to ﬂ* is the resultant torque of all forces
applied to the Counterweight about point A in Figure 4,1. Clearly, the
contributions to these generalized forces of all structural forces within
the Léboratory and the Counterweight must vanish since these forées are

internal to the structure.

The Laboratory and Counterweight structural forces are next expressed

in terms of their stiffness and damping matrices;

i,

m‘t’L

Hop, b= - [REZI-TE U7 =-TRIB K- EIEHE

These equations are substituted into Equation (L4.123), and the result is

F= -TxTipt- [c Lz 1= -IxIT8 ]s/- e 1Ta 5T

linearized yielding:

-~

<
- - n -
TFM% = ?‘r’ﬂt‘{&e,}_
o N all structures

' flexible

(4.124)

1o 0
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where {f, .} has been renamed {F } for convenience, the zeros in
“int’ gen M

Equation (4.124) are 1 x 6 zero vectors, and

i, 5= -k st -1, Bt (i.125)

TS'FM; = '[R]{QZ' EZM‘H?; (4.126)

In Equation (4.125), [k] and [CM] are the diagonal modal stiffness and
modal damping matrices for the Laboratory, and (k] and [EM] are the cor-
responding matrices for the Counterweight. Provision has been made to

input to the program a percentage of critical damping for each mode.

Finally, Equation (4.119) may be expressed as

[Ag—.HgJ =[] Colivi+ic,] (1.127)

1vi= 3£, 1+5c} (4.128)

4. 4.2, Connecting Structure

The forces and moments applied to the Connecting Structure by the
Laboratory are computed in a separate subroutine and then supplied to the
main program where, on the basis of equilibrium of the massless Connecting
Structure, the corresponding forces and moments applied to the Laboratory
and Counterweight are computed. The object of performing the basic structural
calculations in a subroutine is to enable the user to study any type of struc-
ture desired; that is, the subroutine may contain the usual type of stiffness
and damping matrices or any other set of equations (linear or nonlinear)
which relates the structural forces and moments to structural displacements
and velocities., The computation procedure is outlined below (Refer to

Figure 4.1):



(1)

(2)

(3)
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First, the main program.must be sﬁppliedAwith the following
geometrical information:

(a) The specific Laboratory and Counterweight masses (the ith

and gth, respectively) to which the strﬁcture is connected.
(b) Vectors {s} and {8} expressed in z%‘and Z?g respectively
(sée Figure‘h.l) which specify the exact location of the
connection points (E and E) in the aforementioned masses.*
(c) Data specifying the orientation of the structural reference
system z;relative to the associated body system Z% in the
Counterweight mass ﬁa (z is fixed in ﬁa). This referenge
system is the systemﬁin which the forces and moments are
to be computed in the structural subroutine. The orien-
tation of the E‘axes is specified in the same manner as
discussed in Section 2.3.1 of Volume II; i.e., by'speci-
fying the vectors {Yf:'_; ® and { !E'}G in the Xi' coordinate
syétem which is parallel to the o coordinateléystem but
has its origin at E. These vectg}s locate point @ which

is any point on the positive z_ axis and point ® which

3

is any point in the first quadrant of the z plane.

z
13
If the vehicle is deploying or retracting, the main program must

call on the deployment subroutine for information regarding the

deployment; that is, the subroutine must supply vector {£ } and
. , °

its derivatives {ko} and fio}’ where {Eo} is the vector (pro-
jected onto 2) from B to E in the undeformed vehicle.

The main program then computes the displacement and velocity of
point E in the z system. The angular displacement dnd rate of
system E'relative to E'are also computed:; system E'is fixed in

Labortary node i and is parallel to E‘when the vehicle is undeformed.

In the case of a cable truss, for which there are a number of
connectionvpoints, vectoré [s} and {5} are still needed to locate
points E and'ﬁ for use in the deployment computations. The cable
attachment points themselves are specified by vectoré'{s,} (in the
Laboratory) and {éj} (in the Counterweight) where j =»l,32, ces

number of cables.
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(4) The structural subroutine then computes the forces and moments
applied to the Connecting Structure by the Laboratory at point E.

(5) Then, on the basis of equilibrium of the massless Connecting
Structure, the main program computes the forces and moments applied
to the Counterweight at E.

The theory for two types of structures has been developed. The structures

are i) a circular beam of constant cross-section, and ii) a cable truss.

The subroutine provided with the program is applicable for the circular

beam.

4.4 2.1, Circular Beam

For the purposes of illustratiom, a structural subroutine is supplied
with the program. The structure is a beam of constant circular cross-
section. For simplicity, the deployment feature is idealized by simply
assuming that the beam becomes longer as the Counterweight deploys; however
its elastic properties per unit length remain constant. In addition to the
usual beam stiffness matrix, an incremental beam stiffness matrix is included
to account for the stiffening effect due to the action of the centrifugal
forces. Structural damping was based upon modal damping which was obtained
as follows:

(1) The vehicle was idealized as two rigid masses connected by the
aforementioned beam, as shown in Figure 4.8. Note that the axis

of the beam passes through the two mass centers. FEach mass was

assigned typical mass properties. The inertial properties were
assumed to be the same in each of the two transverse bending
planes; otherwise, different modes would occur in the two planes
and different physical demping coefficients would result for

motion in these planes,

(2) The elastic bending, torsion, and axial modes of the vehicle
were obtained. Modal mass, stiffness and (critical) damping

matrices were computed.
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(3) Structural demping of the beam was assumed to be some fraction
Y, of critical modal demping; different values of y were used
for the torsional, axial, and bending modes; The modal damping
was then transformed back to physical coordinates. The result-
ing damping is a function of the undeformed length £ of the
Connecting Structure. ©
As the length zo of the beam approaches zero during a retraction
maneuver, the beam stiffness coefficients approach infinity. Actually,
the flexibility of the end supports and the Laboratory-Counterweight
docking hatch prevents infinite coefficients from occurring; however
these detailed flexibility effects are not modeled in the subroutine
provided. Instead, in order to retain reasonable structural flexi-
bility for small zo, the stiffness coefficients are computed using a
minimum length zo ) whenever Ly < zo e zo ) is input data,
min min min
L. Lh,2.2 Cable Truss
The second type of Connecting Structure is a cable truss which
may contain up to 16 cables, all of which mey have different stiffness
and damping properties. It is assumed that all cables are connected
to the same mass at each end (i.e., the i?h Laboratory mass and the
g}h Countefweight mass, respectively. Furthermore, it is assumed that
the undeformed cable lengths are such that all cables are taut when the
vehicle is in an undeformed configuration. However, cables may go
slack when the vehicle deforms. The tensile force in each cable acts
along the cable and is taken to be proportional to the stretch and
stretch rate of the cable., Finally, all the individual cable forces
are replaced by a single resultant force passing through point E and
a resultant moment about point E.
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4.5 STRUCTURAL LOADS

The facility is provided to compute structural loads at the junction
points between modules (see Figure 3.1) or at any other poiht where the
structure (Laboratory or Counterweight ) can be separated into two free
bodies. This is accomplished on & structure by separating fhe structure
at the load-computation point and considering one portion of the structure
és a free body. The load applied by the free body is then computed by
taking the resulfant of all of the inertia and applied loads on the free
body. Since Connecting-Structure loads are included in thé equations as

‘external loads, the remaining portion of the Laboratory (or Counter-

»weight) may also be ﬁsed as the free body. Of course,‘reéults which
“are opposite in sign would then be obtained. The indexvnumbers of

all mass points in the free body must be supplied as inpuﬁ;data in
addition to the coordinate vector {tz.} ({Ez,} on the Counterweight) to
~ the the load-camputation point. {tz,} is stated in the local zf
cpqrdinate system which is fixed in m,:, the mass containing the load-
computation point. {EZ,} is defined similarly for the case of a load-

computation point in the Counterweight. The forces {f'z,} and torques

i 'z,} for the Laboratory are expressed in the z axes, and the forces
{fz,} and torques {T '2.} for the Counterweight are expressed in the

Y axes.
~

The equations required for the structural-load computations are
listed in Appendix C. To reduce the complexity of the computation pro-
cedure, the structural-load computations use second derivatives that are
evaluated at the previous numerical-integration cycle. 1In the Runge-

Kutta numerical integration scheme used, the program cycles through each
time point twice, and the integrated variables are improved in accuracy
only slightly during fhe second pass. Consequently, the use of second
derivetives evaluated during the previous cycle is a reasonable approximate

procedure; however, the computation can not be pefformed at t=0.
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4,6 COMPUTATION PROCEDURE

A summary of all of the required equations for camputation and a step by
step computation procedure is presented in Appendix C. The Phase II computer

program was based on this Appendix.

Summaries of all of the required equations for the Connecting-Structure
subroutines and corresponding computation procedures are presented in Appendix
G. '
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5.0 CONTROL SYSTEMS

5.1 INTRODUCTION

The control systems were first developed on a rigid idealization of the
Space Stationhand were then tested on a flexible idealization. The rigid model
was capable of deploymént and retraction. This section includes a discussion
~of the development and performance of the control systems on the rigid model,

" SBample rigid-body computer runs are included. Certain modifications were
required to the control-system subroutines for proper operation on the flexible-
vehicle idealization, and these modifications are also described in this section.
Flexible-vehicle time-history results are presented in Section 6. The detailed
computetion procedure used in the rigid-body and flexible-body ver51ons of the

control- system subroutines is presented in Appendix H.

The control systems synthesized for the program are: vehicle attitude
control (Space Station is not spinning), vehicle spin rate control, Counter-
weight position control moving mass (elevator, etc.) p081tlon control vehicle
wobble demping,. vehicle center-of-mass position control, fluid velocity (pump)
control. The Counterweight, moving mass (except the balance mass), and fluid
velocity control sysﬁems are assumed to be perfect; i.e., the controlled variables

are set equal to their commanded values.

5.1.1 Rigid-Body Control-Systems Development Program

A rigid-body compﬁter program was first prepared to develop the control
systems. In this program, the Space Station consists of two rigid bodies, the
Laboratory and the Counterweight, which are normally rigidly attached to each
other., As shown in Figure 5.1, the origin of a set of axes Xl’.Xz’ and X3 is
located at the Laboratory center of mass with axis X1 parallel to the nominal
Space Station spin axis and axis X3 along the long axis of the Laboratory. The.
origin of a set of axes Y 2, and'Y3 is located at the Counterweight ‘center
of mass. The Counterwelght can be moved relative to the Laboratory along a
line parallel to Laboratory axis 3. The Counterweight attitude relative to the

Laboratory is fixed by any preselected set of three Euler angles.



COUNTERWEIGHT
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LABORATORY

(BALANCE
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Fig. 5.1 Rigid Body Space Station Configuration Used for Development
. of Control Systems
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There are 2 point masses, numbers 1 and 2, which cen travel inside the
Laboratory along a line parallel to Laboratory axis 3; Mass 1 represents an

elevator. Mass 2 represents a balance mass, used to balance mass 1.

The rigid-body equations are written so that the Space Station motion
includes the effects of the positions and motions of the Counterweight and 2
masses, given the positions and motions of the Counterweight and 2 masses
relative to the Laboratory. ' The mass decrease in the jet fuel tanks resulting
from reaction jet operation is not simulated. The effects of the CMG on the
motions of the Space Station are computed, given the relative positions and

motions of‘the CMG,

Thus, only the Spéce Station moves "freely" (subject to initial conditions
and the time histories of its external forces and moments). The rigid-body
equations were derived based on the implicit assumption that the motion of the
Counterweight relative to the Laboratory, as well as the motions of the two
masses, and the CMG would be prescribed as a function of time or vehicle state.
To more nearly perfectly assess the performance ofithe.control systems, the
motions of the Laboratory, Counterweight, 2 masses, and CMG would have to be

solved simultaneously.

The approach used'in the program to deal with the limitations is the
following. In the cases of the Counterweight, elevator, and balance mass, the
cormended accelerations relative to the Laboratory are assumed to be obtained.
In the case of the CMG, the‘computaticn of the CMG gimbal angle acceleration
is slightly in error, because at each instant of time, this acceleration is
computed using as an input the Laboratory angular acceleration, computed one
iteration previously (instead of using the Laboratory anguiar acceleration
computed presently). When the inertia of the CMG is extremely small relative
to the inertia of the Space Station - as it is in this case - the error is

extremely small.

5.1.2 Operation of Control Systems on Flexible Idealization

After checkout on the rigid idealization, the control systems were added
to the flexible idealization described in Section 4. Wherever the input to a

control subroutine required the motion measured at the sensor, the flexible-
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body motion of the mass point containing the sensor was used so that the vibration
of the sensor support was included. Similarly, the loads applied by the actuators
were applied to the mass point where the actuator was attached, and the actuator
moved with this mass point; thus, the vibration of the actuator was included.
Aside from the balance-mass control system, all control systems operated on the
flexible idealization with either no or minor modification. The balance-mass

control system required major modification.

5.2 REACTION JET CONFIGURATION IN RIGID-VEHICLE SIMUIATION*

The reaction jet configuration on the Laboratory is shown in Figure 5.2.
In some cases, two jets are used in parallel (for positive torque: 1 and 3, 6
and 7; for negative torque: 14 and 15, 9 and 11). This was done to obtain
sufficient control authority for the spin axis during Counterweight deployment,

without using jets of different sizes.

The jets are located out of the plane of the solar panels and modules. The
jet configuration represents only a first step toward optimization on the basis
of weight, reliability, plume impingement, wiring, maintainability, etc. Jets
1 to 16 were simulated in the computer program. Jets 17 to 20 were not simulated

because they were put on primarily for translation.

The jets mounted on the Counterweight are arranged in the same configuration
as the jet configuration on the Laboratory. Jets 1 to 16 were mounted on the

Counterweight, but not used for control.

Table 5.1 below shows the jet combinations to achieve desired torques

without translation:

Table 5.1 Jet Combinations to Achieve Torgues Without Translation

Torque
About Axis Jet Combination

+1 13, 10; L or 3 or (1 and 3), 6 or 7 or (6 and 7)

-1 2, 5; 14 or 15 or (14 and 15), 9 or 11 or (9 and 11)
+2 4, 12; 20, 18

-2 16, 8; 17, 19

+3 14 or 15 or (14 and 15), 1 or 3 or (1 and 3)- 10, 5
-3 13, 23 9 or 11 or (9 and 11), 6 or 7 or (6 and 7)

*The jet configuration used on the flexible idealization omitted
(see Section 6.0).
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NOTE: THE POWER BOOM IS NOT SHOWN.

Fig. 5.2 Jet Cohfiguration on L—ati)oratory» Core Module in Rigi&:Vehicle Simulation

2-19
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5.3 SERVICE ROUTINES USED BY MAIN COMMAND AND CONTROL ROUTINES

Several service routines are used by one or more of the main command or

control routines., These service routines are first described in this section.

5.3.1 Command Routine POSCOM (Position Command)

Routine POSCOM was devised for commanding a change in the location of some
element., This routine is used for commanding changes in the locations of the
Counterweight, elevator, and other moving rigid masses (except the balance mass)
relative to the Leboratory. There are three possible acceleration levels: A
positive constant, zero, and a negative constant. The element is accelerated
until a specified maximum velocity is achieved or the time for decelerating has
been reached. The case in which the specified maximum velocity is reached and
maintained for a time interval is shown in Figure 5.3. The case in which the

specified maximum velocity is not reached is shown in Figure 5.k,

For the case of moving rigid masses, this routine is used to command the

motion of the mass along each of the three lLaboratory axes.

5.3.2 Command Routine VELCOM (Velocity Command)

Routine VELCOM is designed to command a change in the rate of some element.
This program is used for commanding changes in. the spin rate of the Space
Station and in the fluid flow rate in the piping system. There are three possible
acceleration levels: a positive constant, zero, and a negative constant., The
element is accelerated until the desired rate is achieved. Figure 5.5 shows the

development of the rate command.

5.3.3 Control Routine POSCTR (Position Control)

Routine POSCTR was devised for controlling the position of some element.
This routine is used for controlling the attitude of the non-rotating Space
Station. The position control policy is shown in Figure 5.6. The symbols e
and e designate error and error rate, respectively. The switching curves are
either parabolic or straight lines. In the upper right shaded region, a con-
stant negative control torque or force is applied; in the unshaded region, no
control torque or force is applied; in the lower left shaded region, a constant

positive control torque or force is applied.
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5.3.4 Control Routine VELCTR (Velocity Control)

Routine VELCTR was devised for controlling the velocity of some élement.
This routine is used for controlling the Space Station spin rate and the balance
mass velocity.* The velocity control policy is shown in Figure 5.7. The symbol
¢ designates rate error. The error region is the line e. Starting with e =0
and the'control torque or force = 0, then, as e is increased positively, the
control remains = O until e = eDB’ when negative control is appiied. For
e > epp? negative control is still applied. As e drops off so that 0 <e < epp?
negative control remains on. When e = O, control is turned off. The operation
.in the 1eff-half plane ié exactly the same, except that positive -- instead of

. negative -- control is applied.

5.4 MAIN COMMAND AND CONTROL ROUTINES

5.4,1 Activation of Commands and Controls

The commands for the Counterwelght and elevator positions. and the Space
Statlon spin rate are computed every time point. Updatlng can occur at any
time under any condltlons in each or any comblnatlon of these commands. There

are no restrlctlons on the commands.

The controls for the Counterweight and elevator positions are computed.at
every time point under any conditions. Space Station zero-g attitude control
is activated only when the spin rate command is equal to Zero. Space Station
spin rate control is abtivated only when the spin rate command is not equal to
zero. Wobble damping is activated only when the magnitude of the spin rate
cormand is equal to 0.02. rad/sec or larger. Balance mass control is activated
only when the Counterwelght velocity is zero and the magnitude of the spin rate
commend is greater than a minimum angular velocity which is specified as input

data (.4t rad/sec was used in all numerical work in this report).

5.4.2 Counterweight Position Control

The Counterwelght acceleratlon, veloc1ty, and position relative to the
Laboratory are equated to the command Counterweight acceleratlon, velocity, and

position, respectively.

¥VELCTR is used to control the balance mass velocity in 'the rlgld body ideal-
ization only. As described later, the balance mass control system required
revision to operate properly on the flexible 1dea11zatlon, and the revised -
law does not utilize the VELCTR routine.
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5.4.,3 Elevator Position Control

The elevator acceleration, velocity, and position relative to the Laboratory
are equafed to the commanded elevator acceleration, velocity,‘and position,

respectively.

5.4.4 Wobble Damping

Wobble damping of the Space Station is achieved by use of a single-gimbal
control moment gyro (CMG). The CMG gimbal axis is parallel to the Space'Station
spin axis. The gimbal angle is measured positive counterclockwise relative to

Laboratory axis 3 in the rigid-vehicle notation. The CMG momentum vector is

. located in the vehicle,transverse plane at an angle 90O less than the gimbal

angle., The angle of the Space Station angular rate vector component in the

transverse plane is measured positive counterclockwise from Laboratory axis 2.

- 5.4.4,1 Gimbal Angle Command

The gimbal angle command law used is the highly effective‘90° h-lag law.
In this law, the CMG'angular momentum vector is commanded to lag the Space
Station angular velocity component in the transverse plane by 900. For a

(1)(2)

discussion of the devélopment and effectiveness of this law see the literature.

When the megnitude of the following quantity (which mayvbe regarded as a

measure of the wobble),

e = \o(ii(m(n)w + (M, (0, ') M, 3?))M (33w ))
c (M, () =™ (2,2)) | (5.1)

(l)Zetkov, G., Berman, H., Austin, F,, Lidin, S., Markowitz, J., et al, "Study
of Control Moment Gyroscope Applications to Space Base Wobble Damping and
Attitude Control Systems," Grumman Aerospace Guidance and Control Rep.
GCR-T70-U4, September 1970, prepared by Grumman Aerospace Corporation and

' Sperry Flight Systems D1v1sion

(2 )Austln, F., and Berman, H., "Simple Approximations for Optlmum Wobble Damping
of Rotating Satellites Using a CMG," AIAA Journal, Vol. 10, No 9,
September 1972, pp 1160-1164.
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where
A
™M = vehicle moment of inertia
"
w 2 vehicle anguler velocity
: a
"“O*“CM 6 momentum of CMG

becomes larger than 0,001 (0.0l in the flexible-vehicle idealization), the CMG
is applied continuously to reduce wobble. The gimbal angle commanded is the
angle of the transverse angular velocity vector minus 900. When the magnitude

of the quantity e., becomes less than 0,000l (0.001 in the flexible-vehicle

idealization), thz CMG is commanded to apply zero control torque. That is, the
gimbal is commanded to rotate negatively at a rate magnitude equal to the
magnitude of the Laboratory spin rate, The limits on e3 were lowered in the
final routine supplied with the flexible-body program, becasuse the command to
apply zero torque would not occur during the flexible-body runs with the higher
limits. The reason for this is that the flexible-system residual vibration

influences w, and wy in Equation (5.1).

5.4.4.2 Gimbal Angle Control

A block diagram of the gimbal angle control system is shown in Figure 5.8.
The difference errB between the commanded and actual gimbal angle is processed
in the shortest path logic unit to compute the shortest route to drive the
gimbal angle towards the commanded gimbal angle. For example, referring to
Figure 5.9, the desired gimbal angle rotates positively for the configuration
under investigation in which the Space Station SPin axis inertia is larger than
either of the transverse inertias. In the case shown, it is faster to rotate
the gimbal clockwise (negatively) than to rotate counterclockwise (positively).
The error, BDES -B, however, is positive; without the shortest path logic unit,

the gimbal would be driven counterclockwise along the longer route.

The output signal of the shortest path logic is multiplied by the gain KT.
The result is passed through the lead-lag filter (1 + as)/s. The output of the
£ . R . .
ilter is added to the computed signal thASS' The computed signal thASS is
used to compensate for the torque on the Laboratory resulting from the inter-
action of the CMG moment of momentum with the Laboratory transverse angular

rates. This torque on the Laboratory is shown at point A of Figure 5.8.
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Motor torque saturation is simulated by the limiter. Electromotive
feedback in the motor is modeled by the signal thDBK’ which is proportional
to gimbal rate. The total torque on the gimbal thIM is divided by the gimbal
plus transxerse.wheel inertia IBGIM to obtain the gimbal acceleration relative
to space, BP + ) . The gimbal acceleration relative to the Laboratory is
obtained by subtracting out the Laboratory acceleration &l (one iteration ago).

The gimbal acceleration is then integrated twice to obtain the gimbal angle.

5.4.4,3 Analysis of Gimbal Angle Control System

The basic gimbal angle control system is shown in the figure below, The
shortest path logic unit, the torquer saturation, the subtraction of (.'ul from
Bp, the disturbance t}orque thASS’ and the compensation 81gna]:_ for thASS are

omitted in this figure,

oo .

Br— B 3

-
e-

err
_PD_ES_;'@__/E, K 14 04

B

Replacing the imgr loop with [_' / K/; -_l [ \/ ( b+ ( IBGIM/K)%)A) ’A']
and simplifying, the diagram reduces to that shown below.

ﬁDES N (KT/K,\ (+a4d)

o pE 2
AT+ (Tpgrm

5

Y

/K. )4)
£

v
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The parameters are set as follows:

K. = 21

BGIM
o = o IPGIN\ / Kj;
Also k_r = 0.5 [ K / /Sc,rn]
tgLrM= KB

The frequencies are as follows and, using the above equations for the parameters,

the frequencies have the indicated numerical values:
inner loop: o = Ké/IBGIM = 2 rad/sec |
compensation filter: ¢ = 1/a = K-/lO Togme = -2 rad/sec

overall system: « =-/1.5 K, /IBGIM = 2.45 rad/sec

5.b. 4.4 Gimbal Angle Rate Control System

To apply zero control torque to the Space Station, a switch is made from

gimbal angle to gimbal angle rate control, and the gimbal angle rate commanded

is the negative of the spin rate. A block diagram of the gimbal angle rate
control system is shown in Figure 5.10. The difference erré between the com-
manded and actual gimbal angle rate is multiplied by KT' The result is passed

through the filter (1 + as)/s. The output of the filter err . is integrated to

LL
generate erT ;1 The computed signal thASS’ vhich is subtracted from erry s
is used to compensate for the torque on the Laboratory resulting from the

interaction of the CMG moment of momentum with the Laboratory transverse angular

rates (this torque is shown at point A of Figure 5.10).

Motor torque saturation is simulated by the limiter. Electromotive feedback
in the motor is modeled by the signal thDBK’ which is proportional to gimbal
rate. The total torque on the gimbal thIM is divided by the gimbal inertia I
K The gimbal

acceleration relative to the Laboratory is obtained by subtracting out the

8GIM
to obtain the gimbal acceleration relative to space, B +

Laboratory acceleration &l (one iteration ago). The gimbal acceleration is then

integrated once to obtain the gimbal angle rate.
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5.4,4.5 Analysis of Gimbal Angle Rate Control

The basic gimﬁal angle rate control system is shown below.

jBD -t erT; + B
:\K T 4 A - T 4
h B6In
K.
3
Replacing the inner loop with (—l—) ~ 1 ) and simplifying, the
eplacing K/ T+ (1 M/K,)S
‘ B BGIM 8
diagram reduces to that shown below,
/3055 +"\ ef’rjg /3

\V

(k7K. ) (1+a<)
. VS IG: [ €:)4]
o) A6In P

This diagram is the same as that in Section 5.4.4.3 for gimbal angle control.
Thus, the dynamics of gimbal angle rate control are the same as those of gimbal
angle control. The formulas for the parameters Ké’ a, and KT end the frequencies
given in the section on gimbal angle control

) d w

inner loop’ “filter’ ¢ Coverall
apply also to gimbal angle rate control. When IBGIM’ Ké’ thIM’ MOMy s and KT‘
are inserted as input data and the parameter a is computed in the subroutine

WBLCTR, these values are suitable for both gimbal angle and angle-rate control.

5.4.5 Mass Balance Control

The balance mass control system designed for the rigid-vehicle idealization
required modification to operate properly on the flexible-vehicle idealization.
First, the rigid-vehicle control system will be discussed; then, the required

modifications for operation on the flexible-vehicle will be described,
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5.4,5.1 WMass Balance Control on Rigid-Vehicle Idealization

The location of the Space Staﬁion center of mass is maintained at a desired
point by use of a balance mass. As the location of the elevator (mass number 1)
inside the Laboratory is changed, the location of the balance mass is automatically
changed to compensate for the displacement of the elevator. The removal of mass
from the Laboratory and its deposit into the elevator is not simulated. The
position of the elevator is assumed known. The weight of the loaded elevator is
estimated, the estimate being approximately the gecmetric mean between the weights
of the unloaded aﬂd maximum-loaded elevator. A block diagram of the center of

mass position control system is shown in Figure 5.11,

The center of mass position ccmmand is formed by summlng the mass-distance
moments of the Counterweight, elevator, and balance mass and dividing by the

total station mass, thus_

(e} = 1O} o Y () s

"EXTENDED Nom NOM

The position of the accelerometer sensor {XSENS} is compared with the Space

Cgllm
Station center of mass position command {X } , the difference being used to

compute the acceleration commanded to be sensed by the accelerometer along

Laboratory axis 3, X :IHE(3) The commanded and sensed accelerations are compared,

resulting in the error err:;, which in turn is multiplied by the fixed gain KeXSE

s
to obtain the balance massxvelocity command ké3C along Laboratory axis 3. The
commanded and actual velocities of the balance mass are compared, and the difference
ek23 is processed in the subroutine VELCTR to obtain the commanded acceleration

of the balance mass along Laboratory axis 3. The actual acceleration of the

balance mass is assumed to be equal to the commanded acceleration. The accel-
eration is integrated twice to obtain the position of the balance mass, which in
turn is an input into the computation of the actual position of the Space Station
center of mass, {XC}. This position {XC} and the accelerometer location {XSENSl

SENS(B) along Laboratory axis 3.

5.4.5,2 Mass Balance Control on Flexible-Vehicle Idealization

affect the value of the accelerometer measurement ﬁ

When the control system described in Section 5.4.5.1 was operated on the

flexible-vehicle idealization, a limit-cycle vibration of the Laboratory was
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induced'(see Section 6.2.6). This caused the balance mass to chatter at a
relatively high structural frequency. Its long term motion appeared to be . v
either neutrally stable or slightly unstable. At any rate, it did not balance.
the elevator motion. -For this reason, and also because meny of the rigid-vehicle
dynamics relations were deleted from the control law, the control system was

modified extensively.

The control system for the flexible vehicle idealization is shown in

Figure 5.12. The acceleration commanded at the accelerometer in the 3 direction
iCMND(3) is generated in a similar way as in the rigid-body program. The sensed
angular velocity, anguler acceleration, and the commanded distance from the
center of mass to the accelercmeter are fed into a computer which computes
XCMND(3) by using an eqﬁation which assumes the Space Station is rigid and in
balance. The commanded distance from the center of mass to the accelerometer
'is a constant and is input data to the program. This distance includes the
elastic_étretching of the.vehicle due to centrifugal forces. The commanded and
sensed accelerations are subtracted to form errsy which may be filtered to form

X
erTLT This filtering was used before any other modifications were made ; however,
it was not helpful in achieving proper control. The filter remains in the
program although it was bypassed in the demonstration runs by setting TRAL, = 0.

The balance mass acceleration is assumed to be given by the following relation:
2(1) 2 oy _ (1) | -
X77(3, 2) = Kppep X7 (35 2) + Koy Cprrp (5.3)

_ This relation provides a smooth build-up of acceleration, Tt replaces the
on-off VELCTR policy which was used in the rigid-vehicle mass balance control
law, As seen in Section 6.2.6, the revised control law operated properly on the

flexible~vehicle idealization.
5.5 DEMONSTRATION RUNS ON RIGID-VEHICLE TDEALIZATION

Six types of runs were established to demonstrate the operation of the
Space Station control systems: (1) zero-g attitude control, (2) spin rate
hold during Counterweight deployment, (3) spin-up, (k) Space Station center of

mass position control during elevator operation, (5) wobble damping, and
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(6) simultaneous center of mass position control and wobble control. The Space
Station parameter values used in each type of run were the same. The input data

for all runs is tabulated in Appendix K.

5.5.1 Attitude Control

Run 10
Run 10 demonstrates attitude control. Initial errors in attitude were

used to test for cdnvergence to the desired state of zero Fuler angles.

Description of Run 10
As showm in plots 1 to 3 of Run 10, Figure 5.13, there is an error of
0.0175 rad (1°) in all 3 Euler angles at time = O. These errors are reduced

to values near O in approximately7minimum time. Error reduction is faster about
axis 2 than about axis 1, because (1) the inertia of 14.104651 x 106 kg ° m2

~ about axis 2 is less than the inertia of 17.7912 X 106 kg - m2 about axis 1 and
(2) the average'moment.arm for axes 1 and 2 is the same, 4,572 m (15 feet).

Error reduction sbout axis 3 is faster than about axes 1 and 2, because--even
though the average moment arm of 1.8288 m (6 feet) for axis 3 is less than the
average moment arm of 4.572 m (15 feet) for axes 1 and 2 -- the inertia of

3. 820159 X 106 kg ° m about axis 3 is much less than the inertias of 17.7912 x lO6

and 14,104691 x 106 kg * m2 about axes 1 and 2, respectively. From the printout
' -3
b

(not shown), the errors in the Euler angles at time = 100 seconds are +O.1505 x 10

0.1510 x 10_3, and -0,1283 x 1073 radian about axes 1, 2, and 3, respectively.

As shown in plots L4 to 6, Figure 5.1, torques are applied by the 222.4 N
(50 pound) thrust jets (2 jets for each polarity, L jets for each of 3 axes)
to reduce the Euler angle errors to tolerable levels, Considering axis 1 at
time = O, el = 0,01745 rad and él = 0; thus, the operating point in the phase
plane of Figure 5.6 is located in the right shaded region on the line + e, to
the right of + ©5DB
Referring to Plot Lk of Figure 5.14, the torque initially is negative as called

= 0.0001745 rad; thus, negative torque is commanded.

for. Between time = O and 12,3 sec, the trajectory of the operating point in

the phase plane of Figure 5.6 is downward and to the left until it meets the’

curved parabolic portion of the switching curve (note: in this case,‘the para-
bolic sﬁitching boundaries are flattened relative to those shown). From time = 12,3
to 12,5 sec, no torque is applied; and from time = 12.5 to 25.75vsec, positive
torque is applied, With time, the duration times of torque application decrease,

while the duration times for coast increase, until stable limit cycle operation

is achieved.
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5.5.2 Spin Rate Hold During Counterweight Deployment

Run 21
Run 21 demonstrates the control of the Counterweight as it is moved from

its retracted to its deployed position and the control of spin rate while the
Counterweight is in motion. The initial spin rate is 0.2 RPM. Five seconds
after the run begins, the deployment of the Counterweight begins. The compléte
deployment is simulated.

Description of Run 21
As shown in Run 21, Plot 1, of Figure 5,15, the acceleration of the Counter-

weight relative to Laboratory axis 3 is -30.48 mm./sec2 (-0.1 ft/secg) from
time = 5 to 7 seconds and +30.48 mm/sec2 from time = 667 to 669 sec. Plot 2
shows the Counterweight velocity along Laboratory axis 3 increasing negatively
to -60.96 mm/sec fram time = 5 to 7 seconds, constant at -60.96 mm/sec from

time = 7 to 667 seconds, and going to zero from time = 667 to 669 seconds.

Plot 3 shows the Counterweight position along Laboratory axis 3 at -23.99 m from
0 to 5 seconds, increasing negatively from -23.99 to 66.81 m from

time = 5 to 669 seconds, and essentially constant at -66.81 m from time = 669

to 800 seconds.

time

Plot L4 of Figure 5.16 shows the spin rate error at O from time = 0 to 5
seconds. Limit cycling occurs from time = 5 to 712 seconds. The cycle consists
of the spin rate first increasing negatively to -0.00021 rad/sec (equals the
deadband) as a result of the Counterweight motion and then going to zero as a
result of the combined effect of the Counterweight motion and jet control torque.
From time = 712 to 800 seconds, the spin rate error increases negatively at a
low rate (7.4 x lO'8 rad secg) as the result of a small residual creepage of the
Counterweight (1.9 x 10™ m/sec)., Plot 5 shows the spin acceleration equals O
from time = O to 5 seconds, increases negatively to -0.000067 rad/sec2 as the
Counterweight accelerates, is constant at -0.000067 rad/sec2 as the Counterweight
travels at constant velocity, and then jumps to +0.000158 rad/sec2 as a result
of the combined effect of the jet control torque and Counterweight motion. Sub-
sequently, the spin acceleration oscillates between two values: the positive

value corresponding to the combined effect of the jet control torque and constant
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Counterweight velocity and the negative value corresponding to the effect of the
constant Counterweight velocity. As the inertia of the Space Station increases,
both the spin deceleration resulting from constant Counterweight vélocity and
the spin acceleration resulting from the applied jet control torque decrease in
magnitude. Thus, both the high and low values of the oscillation decrease in
magnitude with time. From time = 708 to 710 seconds, the spin acceleration
increases from 0,0000079 to 0.0000LY rad/secz, as the counterweight decelerates
to a stop. From time = 710 to 712 seconds, the jJet control torque continues to
be applied until the spin rate error is nulled, at which poiht the jet control
torque is removed, and the spin acceleration essentially remains at zero. The
period of each cycle gradually increases, because the magnitude of spin accel-
eration decreases both on the positive and negative side whileqthe spin rate
dead band remains constant. Plot 6 shows the jet control torque oscillating
between the two levels O and 4067 N « m from time'= 5 to 712 seconds. The Jjets
turn on each time that the.magnitude of the spin rate error becomes equal to the
spin rate error dead band and turﬁs off each time that the spin rate error has

been reduced to zero.

505-3 Spin'UP

‘In these demonstration runs it was decided to investigaté whether the
Space Station could be controlled with all control-system components located
only on the Laboratory. Accordingly, the moment arm between the spin jets was
only 9.14k m, As a result, using four 222.4 N (50 pound) jets, it would take
over five hours of real time to complete the spin-up maneuver. The first 50
seconds of the spin-up maneuver was simulated, and the control éystem operated
properly. This run is not included herein. Instead, the following run is
included which demonstrates a complete spin-up meneuver. The jet thrusts were
increased by a factor of 100 in order to complete the run using'an economical

amount of coniputer time,

Run 31

Run 31 demonstrates the control of Space Station spin rate, as the spin
rate is commanded to be increased from 0.2 RPM to 4 RPM, Purihg the spin-up,
the Counterweight is fully deployed at -66.81 m. By increasing the thrust level
of each jet by a factor of 100 over the value of 222.4 N, each jet had in Run 21,

the complete spin-up is simulated, but at a jet level 100 times more than desired.



532

Description of Run 31

As shown in Run 31, Plot 1 on Figure 5.17, the spin acceleration command
is O from time = O to 5 seconds, 0.00427 rad/sec2 from time = 5 to 98 seconds
(100 times larger than in Run 30), and O thereafter. Plot 2 shows the spin
rate commend initially at 0.02094 rad/sec; fram time = 5 to 98 seconds, it
climbs steadily toward 0.4189 rad/sec. The spin rate command then remains
constant at 0.4189 rad/sec. Plot 3 shows the spin rate following the spin rate

command of Plot 2,

The spin rate error (spih rate minus the spin rate command) is given in
Plot 4 of Figure 5.18. From time = 5 to 5.05 seconds, the spin rate error grows
negatively to -0.0002 rad/sec (the spin rate error dead band is 0.0002094). The
error then immediately backs off to -0.00016 rad/sec. The back-off is physically

impossible; this irregularity results from an error in integrating © That is,

the L-point Adams formula is used, without reverting to starting for;ulas. From
time = 5.05 to 98 seconds, the error grows very slowly fram -0.00016 to -0.00019
rad/sec. At time = 98 seconds, the spin rate command stops climbing. During
the next 0.05 seconds, the jets remain on until the spin rate error is zeroed.
Plot 5 shows the spin acceleration = 0 from time = O to 5.05 seconds. At

time = 5.05 seconds, it jumps to +0.00L427 rad/secg, because the spin rate error
exceeds its dead band and the jet control torque shown in Plot 6 is applied.
From time = 5,05 to 98 seconds, the spin acceleration = 0,00427 rad/sec2 as the
Jets remain on to increase the spin rate as commanded. At time = 98 seconds, the
spin acceleration drops to zero, because the spin rate command has stopped
climbing and the spin rate error has been nulled. Plot 6 shows the jet control

torque. Its level of U06.7 kN - m is 100 times the nominal value of 4.067 kN - m.

The printout data showed that the CMG gimbal angle rate at time = O
is equal to the negative of the spin rate, i.e., -0.02094 rad/sec, and as the
spin rate is increased from +0.02094 to +0.4189 rad/sec, the gimbal angle rate
goes from -0,0209% to -0.4189 rad/sec.

5.5.4 Mass Balance

Run 40
Run 40 demonstrates the control of the Space Station center of mass

location, with the station spin rate at 4 RPM and initial wobble at zero. The
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Counterweight ldca.tioq is fixed at its fully deployed position, -66.8L m.
Initially, the location of the Space Station center‘of mass is at its desired

position. Beginning at time = 5 seconds, the elevator is moved from O to 1.524 m

(5 feet).

Description of Run 40

Mass balancing is shown in Run 40, Figures 5.19 and 5.20. Plot 1 shows
the Space Station center of mass position commend along Laboratory axis 3 to be
constant at -26.912 m (exact value fram the printout). Plot 2 shows the actual

Space Station center of mass location along Laboratory axis 3 to be -26.9 m (the

printout indicated that this location fluctuates by no more than +,015 from -26,912 m
during the rﬁn)‘ Plot 3 shows that the sensor acceleration command for the
accelerometer located at 4.654 m along Laboratory axis 3 is approx1mately -5.55
m/sec2 or -0.57g (it fluctuates between -5.557.and -5.517 m/sec during the run).

The acceleration commanded minus acceleration sensed, as given in Plot i, shows

the error jﬁmping to +0,001 m/sec2 at time = 5 seconds when the elevator begins

its motion. This error reverses polarity at time = 6.3 seconds and reaches a

peak negative value of -0.0036 m/sec at time = 12 seconds. At time .= 20.6

secondé, a stéady limit cycle is achieved with thé maximum magnitude of error

being 0.0002 m/secz, or 1.87 x 1077

The jumps in the error occur when there is a discontinuity in the acceleration

g; thus a sensitive accelerometer is required.*

of the elevator, as may be deduced by comparing Plot 6, elevator position, with
Plot 4, The jump occurs in the accelerometer signal as a result of the jump in
the acceleration of the elevator. The jump in the error signal could be softened
by filtering the accelerometer output; one hypothetical fesult of inserting the
filter is: the balance mass, shown in Plot 5, would, beginning at time = 5 sec,
move in the wrong direction by a lesser amount than that shown. Plot 6 shows

A 5 seconds, when it begins to increase toward

the elevator at 0 m until time

1.524 m as commended., At time = 19.25 seconds, the new desired ldcation of.

1.524 m has been reached The elevator position then remsins constant. The
positlon of the balance mass shown in Plot 5 is O m initially and at time =5

seconds starts driving in the wrong direction to a peak value of +.12 m before
*Kﬁ-éifgfﬁégi;e_fg to increase the velocity error dead band., Successful
balancing was achieved with the dead band increased from .3 mm/sec to 5 mm/sec.
This eliminated the limit cycling entirely; however, the balance mass no longer
responded to small elevator motions.
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it moves toward negative values. At time = 20 seconds, the position of the
balance mass has stabilized and from this time point on, remains between -3,018
and -3.078 m or i0.030 m from the required location of -3.048 m., The balance
mass has generally moved in the opposite direction fram that of the elevator and
twice the distance, as it should since the balance mass of 2268 kg (5000 pounds)
is half the elevator mass of 4536 kg. The estimate for the elevator mass

used in the control system is 2268 kg.

5.5.5 Wobble Damping

Run 50

Run 50 demonstrates control of the Space Station wobble, for a Station
spin rate of 4 RPM, an initial angular rate about Laboratory axis 2 of 0.001
rad/sec, and an initial angular rate about Laboratory axis 3.of zero. With
the Counterweight fully deployed at -66.81 m, the elevator and balance mass each
weighing 2268 kg and each located at the Laboratory center of mass, the Space
Station inertias are 95.33 x 106, 91,64 x 106, and 3.821 x 106 kg m2 about
axes 1, 2, and 3, respectively. The CMG is initially set to give no control
torque. The initial gimbal angle i8 zero and initial gimbal angle rate is

equal to the negative of the spin rate.

Description of Run 50
At time zero, the CMG is in the "off" mode (control is not being applied)

and the wobble state, as measured by the quantity
2 2 ;
5 [12(.,2 + ((Il - 13)13‘“3/(11 - 12))]/(momCMG)wl

is larger than the high threshold value 0.001. In this case, control is
turned on and applied until the wobble state is reduced to the low threshold
value 0.0001, at which point control is turned off; i.e., the gimbal angle is
commanded to rotate clockwise at the negative of the spin rate. At this point,
gimbal angle control is switched to gimbal angle rate control. When in the
gimbal angle rate control mode, the gimbal angle command remains constant; this

occurs at time = 40.75 seconds.

As shown in Run 50, plots 1 and 2 of Figure 5.21, the angular rates about
the transverse Laboratory axes 2 and 3 oscillate with a decreasing meguitude,

- At time = L1 seconds, the angular rates w, and wg = +0.467 x 107 and
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0.348 x 10'6 rad/sec, respectively. The decrease in magnitude is approximately
straight-line, because the level of the CMG torque applied remains approximately

constant until the time is reached when the CMG torque is turned off.

Plot 3 shows the gimbal angle command. Initially, it is L4.71 rad (2700)
and increasing at an average rate of 0.4112 rad/sec (close to the spin rate
value of 0.4189 rad/sec). The desired gimbal angle is one for which the CMG
momentum vector in the transverse plane is 900 less than the component of the
Space Station angular velocity vector in the transverse plane. The gimbal angle
command continues to rotate in a counterclockwise manner at about the same rate
until the Space Station angular rates are relatively small (time == 30 seconds).
At this point, the rate of the gimbal angle command begins to fall off, and at
time = 33.75 seconds the gimbal angle command changes direction and starts to
move clockwise! At time = L40.75 seconds, the gimbal angle command is no longer
used; command is switched to the gimbal angle rate command mode, After time
= 40,75 seconds, the gimbal angle cammand is constant and not used. The gimbal
angle rate command is not plotted, but at time = 40.75 seconds, it becomes equal
to the negative of the spin rate and remains at this value while the CMG is in
the "off" mode,

Plot 4 of Figure 5.22 shows the CMG gimbal angle error. At time = 0, its
value is -1.57 rad (-90 degrees) since the gimbal angle command = 4,71 rag
(270 degrees) and the gimbal angle = O, The gimbal angle is rotating at the
negative of the spin rate. Initially, the gimbal angle is 90o from the gimbal
angle command; thus, subsequently the gimbal angle is driven towards the value
of the gimbal angle command. At time = approximately 3 seconds, the gimbal angle
has been approximately matched to its command. Hypothetical improvement could
result by altering the formula for establishing the initial conditions of the
lead-lag integrator when switching to the gimbal angle control system. The
gimbal angle follows its command until the time = L0.75 seconds, when the
gimbal angle command is removed and replaced by the gimbal angle rate command,
After time = 40.75 seconds, the gimbal angle rate is driven to the commanded

value (negative spin rate = -0,4189 rad/sec).

Plot 6 shows the torque applied by the CMG on the Space Station about
axis 2. From time = 0. to 1.5 seconds, when the gimbal angle is not yet close

enough to its comanded value, the torques generated by the CMG on the station
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are of the wrong polarity. But after time = 1.5 seconds, the torques generated
by the CMG on the station oppose the Space Station angular rates as desired,
until time = L40.75 seconds. At this time, the torques generated by the CMG on

the station decay toward zero.

Plot 5 shows the gimbal angle rate error which is applicable only when
the gimbal angle rate control system is in operation. This occurs at time
= 40.75 seconds; at this time the error is -0,391 rad/sec (the gimbal angle
rate = -0.0279 rad/sec and the gimbal angle rate command = -0.4189 rad/sec,
which is the negative of the spin rate). The gimbal angle rate error is well

on the way to being nulled after only approximately 2.5 seconds.

5.5.6 Simultaneous Mass Balancing and Wobble Damping

Run 60

Run 60 demonstrates simultaneous control of the Space Station center of
mass location and Space Station wobble, for a station spin rate of 4 RPM, and
initial angular rates of 0.001 and O rad/sec about Laboratory axes 2 and 3,
respectively. The CounterWeight is fully deployed at -66.81 m. Initially,
the location of the Space Station center of mass is at its desired position.
Beginning at time = 5 seconds, the elevator is moved fram O to 5 feet. The
elevator weighs 4536 kg and the balance mass weighs 2268 kg, The CMG is initially
set to give no control torgque. Thne initial gimbal angle is zero and intial

gimbal angle rate is equal to the negative of the spin rate.

Description of Run 60

Comparisons of Run 60 with Runs 40 and 50 show that mass balancing and
wobble damping when performed simultaneously are the same as when performed

individusally.

5.6 CONCLUSTONS BASED ON RIGID-BODY DEMONSTRATION RUNS

The control systems perform their respective functions as generally
intended for the rigid-bodx Space Station. The control system models can now
be incorporated in the digital computer program for simulating the dynamics

of the flexitlle Space Station.
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To obtain sufficient control authority for holding constépt_spin rate
during Counterweight deployment without going to higher levelé of jet thrust,
or using jets of different sizes, extra jets are required beyond those required
for attitude control. Also the thrust level of each jet must exceed 100 N, when
there are I jets per polarity with average jet arm = 4,57 m, so that the jet
torque is capable of cbping with’ the disturbance torque resulting from a Counter-
weight velocity of .06 m/sec. A time of 11.78 minutes is taken in moving the
Counterweight from its fully retracted position (-23.99 m from the Laboratory:
center of mass) to its fully extended position (-66.81 m) at a maximum velocity

of .06 m/sec relative to the Laboratory.

For the set of values used, spin-up from 0.2 RFM to 4 RPM requires 2.58
hours, using four 222;& N thrust jets per polarity, each with an average arm
of 4.57 m. (The computer machine time required to simulate the complete operation
would be about 5.16 hours, since the ratio of machine time to real time is
approximately 2.25.) A more efficient method would be to locate jets on the
Counterweight as well as the Laboratory; however, this would involve other
penalties., In the demonstration runs, it was assumed that all control-system

components must be mounted on the Laboratory.

In the control of the Space Station center of mass location, the estimate
for the elevator weight does not have to be accurate to achieve satisfactory

operétion. Estimate errors 50 percent low and 100 percent high'were tested.

In wobble damping, the vehicle dynamic response is basically one of an
unforced vehicle for large wobble and one of a forced vehicle for small wobble.
The criterion for CMG torQue shut-off (a measure of wobble similar to wobble
enefgy) could be replaced by the CMG gimbal angle command, which changes in
its basic nature as the wobble decays to small levels. (The type of CMG used
for wobble damping ié single-gimbal, with théjgimbal axis parallel to the

nominal spin axis,)

Wo interaction was observed between wobble damping and mass balancing when

performed simultaneously.
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6.0 NUMERICAL RESULTS DEMONSTRATING THE COMPUTER _PROGRAMS

The ﬁASA Langley Research Center provided Grumman with‘the configu-~
ration shown in Figure 6.1 for demonstrating the computer program. The
physical‘propérties of the structural components are presenfed in
Apﬁendix F. First, the modes of each modgle were computed. Then the
free-free modes of the Laboratory and the Counterweight were synthesized
‘using the Phase I computer program with the modes of the modules used
ag input data. The Counterweight was relativély rigid. The‘lowest flexible
Counterweight frequency was 6.851 Hz whereas the sixth ﬁaboratory frequency
was .382 Hz. It was therefore decided to idealiie thé Counterweight'as
a rigid body in the Phase II Computer program which develops the time.
history. As shown in Figure 6.2, the Laboratory was idealized using
seveﬁty-tWo mass pointé.- Six flexible Laboratory modes were used. These
are tabulated in Apbendix I. Because of the relatively large flexibility
of the solar panels, most of the motion in these modes is‘éolarfpanelbmotion.
A total df'18 coérdiﬁates are used in the time-history fuhs.: These are the
gsix Laboratory modes;'six rigid—body coordinates 10catihg,the.mean axes for

the Laboratory, and six rigid-body coordinates for the Counterweight.

The Connecting Structure used in the examples is the telescopic
tubular beam described in Section 4.4.2.1. The fully deployed undeformed
length is Lo, 822 m and the retracted length is zero. Data for the demon-

stration runs is listed in Appendix J.

6.1 TESTING OF THE PROGRAMS

The check problems run on the Phase I computer program were discussed
in Section 3.4. To test the Phase II computer program, a separate program
was prepared by an independent programmer. In the test program only the
eduations for the configuration shown in Figure 6.1 were programmed. Unlike
%he problem used to deménstrate the program, the Counterwéight was flexibie
and all appendages, including solar panels, were rigid. Tést runs included
free vibration with very general initial conditions, vibration with externally
applied loads, vibration with fluid being pumped, vibration with two.rigid

masses in motion, and a Connecting-Structure retraction maneuver. In all
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cases, the angular velocity was L RPM, Also, the Space Station was run
as a rigid body using the Phase II program, and the results were compared
with those obtained on an existing rigid-body program. All results obtained

from the Phase II program agreed with the results obtained from the sbove-
described programs.

6.2 DEMONSTRATION RUNS
The following runs will be described in this section:
® Attitude control
® Deployment

® Spin up

® Wobble control

® FElevator motion with mass balancing

® Tluid pumped between reservoirs
All control-system jets were mounted on the Laboratory coré module as
shown in Figure 6.3. The control system sensor was mounted at the cm

of mass point 4, The CMG was also mounted at mass point L,

The runs were selected to demonstrate the capability of the computer
program. There was no attempt to optimize any of the operation parameters
such as control-system gains. Also, in the case of the deployment and
spin-up maneuvers; the jet thrusts were increased to unrealistic values
in order to complete the maneuvers within 45 sec., thereby saving com-

puter time,

' 6.2,1 Attitude Control

During the attitude-control maneuver, the system was not rotating,
and the Connecting Structure was fully retracted, The attitude control
system developed in Section 5 required no modification for use on the flex-
ible-system idealization. The three components of the main Euler-angle
vector {Y} are shown in Figure 6.4, Curves for a rigid-body run were over-
layed with the flexible body curves of Figure 6.4 and no difference could
be discerned, The Space Station was initially tilted so that each Euler
angle was ,01745 rad (1.0 degree). The control system then reduces each
angle to the commanded value of zero, Similar behavior occurs along the

three axes. The jets first apply.a torque to begin correcting the attitude
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angle. Then a torque is applied in the negative direction to slow down

the Space Station's ahgular rate, Figure 6.5 shows the components of the
angular velosity vector during this run. Linear deformation in the Connecting
Structure is shown in Figure 6,6. Since the Connecting Structure is fully
retracted, the illustrated deformation actually represents the very small
deflections of the.relatively stiff Comnecting-Structure docking hatch.

This connection is only approximately represented as discussed in Section
4.4,2,1, Figure 6.7 illustrates the vibration at mass point 17 which is
located at a very flexible strip on a solar panel. Examination of the

two bending motions of the strip shows that the frequency in the 1 direction
is seen to be roughly 50% of the frequency in the three direction. It can
be seen from the solar-panel modes in Appendix F, that this difference in

frequency is inherent in the solar-panel structure.

6.2.2 Deployment with Spin-Rate Hold
Figures 6.8 - 6.11 illustrate a deployment maneuver at .0209k rad/sec
(.2 RM). All motion in this run is in the spin plane. TFigure 6.8 shows

the prespecified motion of the undeformed Connecting Structure (i.e,, the
third component of {ﬁob. The Connecting Structure deploys from anlundeformed'
length of zero to 42,822m, If the spin control system were not operational,
the spin rate would decrease to maintain constant momentum; however, the
commend to maintain a constant spin rate was given during this run. To
accomplish the deployment within Lo seéonds, the jet thrust was increased
from & nominal value of 222,4N (50 1bs) to 44u8.2N (1000 1bs). Figure 6.9
shows the spin rate and the axial deformation in the beam during deployment,
The deployment command is given at t = 1 sec, and as the Laboratory and
Counterweight begin to separate, there is compression in the beam. During
this phase 263 >0 (see Figure 6.8). When the maximum velocity 203 = 1.270 m/sec
(50 in/sec) is reached, and deployment proceeds at constant'velogity, the beam
is expanded slightly by the centrifugal force, At approximately 35 seconds,
the deceleration begins (263 <0) and the expansion in the beam is increased
significantly, Deployment ends at about LO seconds, The final expansion
is much larger than the initial compression mainly because the Connecting
Structure is more flexible when more of it is deployed. For the same reason

the transient vibration occurs at a lower frequency when deployment is near
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completion, Figure 6.10 illustrates the bending of the Connecting Structure
during deployment. This bending occurs partially as a result of the Coriolis
forces but primarily it is due to the spin jets torquing the Laboratory to
maintain a constant angular velocity. The deformation at mass point 17

and the internal torque exerted by the solar panel on the core module are

shown in Figure 6,11,

6.2.3 Spin Up
Figures 6.12-6.14 illustrate a spin up maneuver, The Space Station is

initially rotating at .02094% rad/s (.2 RPM) and, at 5 seconds, the command

is given to increase the spin speed to .4189 rad/s (4 RPM). All motion in
this run is in the spin plane, In order to accomplish the maneuver in 40O

sec, the jets on the Laboratory were increased from 222,4N (50 1bs) to

66.7kN (15,000 1bs). Figure 6.12A illustrates the increase of the spin speed,
and Figure 6.12B illustrates the corresponding increase in the axial extensim
of, the Connecting Structure due primarily to the centrifugal force. Figure
6.13 shows the bending in the Connecting Structure during the spin up maneuver.
Unusually highldeformations occur as a result of the large torgues on the
Laboratory generated by the increased jet thrusts., Figure 6.14 shows the
largest component of the deformation at mass point 17 and the largest com-
ponent of theiforce exerted by the solar panel on the core module at the

root of the paﬁel. ' \ '

6.2.4 Quiescent State

When the Space Station is rotating in its nominal state of pure spin

(i.e., it is in a state of pure rotation about the X1 axis with no vibration),
constant elastic deformations occur due to the centrifugal force. This

state is known as the quiescent state. During the runs which were made when

vthe Space Station was rotating at its nominal spin speed of .4189 rad/sec
(4 rRPM), the initial conditions are a variation from the quiescent state.
Before making these runs, the quiescent state deformations.were determined
by setting all of the damping coefficients (for both the Laboratory and the

Connecting Structure) to 80% of their critical values. A short run was made,
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and the deformations rapidly damped to their quiescent values. The
quiescent deformations were highest at certain points on the solar panels.
As an example, the deformation in the X3 direction at mass point 17

(q17 3) was approximately 544 mm (21.4 in).

6.2.5 Wobble Control
Figures 6,15 - 6.17 illustrate time histories during wobble control.

Initially, the deformations were set to their quiescent vélues, and

the second component of {QX} was given a wobble component of .00l rad/sec.
Figure 6.15 illustrates the performance of the wobble control system, Up to
approximatély 27 seconds the curves are essentially identical to a run made
for a rigid Space Station, This indicates the usefulness of_the mean axes;
‘one reason that they were used was that they move at the'average motion

of the deformed system. After 27 seconds, some small higher-frequency
oscillations predominate due to elastic vibration., The only modification
required to the CMG control system was to decrease the amount of wobble

at which the CMG stops trying to control wobble (see SectionVS). Before
this modification was made, the CMG sensor reacted to the residual vibra-
tion and the CMG continued to operate in the wobble-damping (gimbal angle-
rate) mode throughout the entire run. Figures 6.16 and 6.17 illustrate

. . ) £ 6
some of the deformations occurring during this run. 35 ql7, 2,and ql7"3

have nonzero quiescent deformations, and the oscillations about these

values are very small so that their deformations appear to be constant at

the quiescent values. Figures 6.18 and 6.19 illustrate the same deformations
for the same initial conditions; however, in this case there is‘no wobble
control system present. As in the previous case, 53, ql7, Py and ql7’ 3 |
are nearly constant at thier quiescent values. When coamparing the curves
with the previous run, note the difference in scales. There is consider-
ably less vibration out of the spin plane (5l and q17, l) without the

control system since the control moment gyroscope induces primarily
out-of-plane vibration in addition to some in-ﬁlane vibration., The in-plane

vibration (52) is somewhat smaller with no wobble control.
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6.2.6 Elevator Motion With Balance Mass Control

Moving rigid masses were present only in the runs described in this
subsection., In these runs a 4,530 kg (10,000 1b) elevatdr and a
2,270 kg (5,000 lE) balance mass are initially located on the X3 axis
near the Laboratory cm; Both masses move along the X3 axis. All rigid-
body and flexible mgtion is in the spin plane, Initially the Space
Station is rotating ih the quiescent state. Figure 6,20 illustrates the '
performance of the control system which operated properly on a rigid ideal-
ization of the Space Station. The short 1,524 m (60 in) motion of the
elevator should have resulted in a 3.048 m (120 in) motion of the balance
mass in the opposite\direction, thus nulling the error in the position
of the Space-Station center of mass, The curves show tha£ the balance
mass overshoots and the error oscillates; thus this attempt at mass bal-
ancing is unsuccessful. To understand the reason for this problem, it is
helpful to reexamine the the control concept. An accelerometer located
at mass point 4 on the Laboratory senses the acceleratioﬁ. When the
centrifugal portion of the aéceleration is unequal to the commanded
value, it is known that the center of mass of the Space Station has shifted
since the vehiclevrétates about its center of mass. It is desired to move
the balance mass in the proper direction to null the error in the measured
acceleration.. Compensétion for rigid-body acceleration effects such as
wobble has been provided in the control law in order to separate fhe centri-
fugal acceleration from the other components of acceleration; however, no
compensation for vibration of the accelerometef support Was‘provided.
The original control system incorporated an on-off actuafdr where the
balance mass was either moved at constant acceleration or at zero accelera-
tion, depending on the magnitude of the error. Whenever the balance mass
was moved, an equal and opposite reaction on the Laboratory caused elastic
motion of the Laboratory relative to the Counterweight. Periodiéally,
the generated acceleration at the sensor due to this vibration overwhelmed
~ the centrifugal acceleration and caused the balance mass to reverse its
direction at a relatively high frequency. The accompanying high frequency

1limit cycle vibration in the axial direction is evident in the plot of 53
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in Figure 6.21. The chattering of the balance mass caused the sluggish
motion indicated in Figure 6.20 because it had short spurts of motion in the
wrong direction for a large proportion of the time. Acceptable control
could not be achieved by either varying the control-system parameters or
filtering the error signal; therefore the on-off control law was replaced

by the proportional control described in Section 5,

The new control law provided satisfactory control as shown in Figure 6.22,
Thé elevator and balance mass are initially located at X3 =‘l9.h and 8.9 m,
respectively, and the elevator moves towards the balance mass at t = 5 seconds,
The control system is required to balance a longer elevator motion of 7.00 m,

" The curve showing the error in the position of the Space-Station center of
mass indicates that there is a lag in the response of the balance mass,
however by the end of the run the Space Station is balanced. The deforma-
tions in the Connecting Structure during this run are shown in Figure 6.23.
Note that there is an initial vibration although the elevator does not begin
its motion unfil 5.seconds. This initial vibration results because the
initial quiescent deformations are insccurate for this case since they were
‘obtained in a run Where moving masses were not present. The main Connecting-
Structure bending effects are caused by the Coriolis forces exerted by the
moving masses on the Laboratory and by the spin jets which torque the Labor-
atory to maintain the commanded constant spin speed. The deformation at mass
point 17, which is on a solar panel, and the internal force exerted by the

solar panel at its root (mass point 42) are shown in Figures 6.24 and 6.25.

6.2.7 Fluid Pumped Through Laboratory

Fluid was preéent only during this run, The fluid is pumped along
the long axis of the Lgboratory as shown in Figure J1 of Appendix J.
Pumping begins at 2 seconds. The fluid velocity and height of the fluid
in the emptying reservoir, located on mass point 8, are shown in Figure 6.26,
Pumping proceeds until the emptying reservoir is empty at t = 35.7 seconds
when the pump suddenly shuts down., After shut down, fluid remains in the
pripe line. All motion during this run occurs in the spin plane.
Figure 6,27 shows the deformations of the Connecting Structure. When the
fluid is being pumped, the bending is illustrated in Figure 6.28,
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The primary reason for this bending is that the resultant of the Coriolis
forces exerted by the fluid acts to the left of the cm of the Laboratory
as illustrated in the figure, This force also tends to slow the spin
speed of the Laboratory slightly (from .4189 to .4149 rad/sec). The
control system is not operational; therefore the spin jets do not turn

on to correct the spin speed.
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7.0 CONCEPTS FOR A SCALE MODEL

7.1 INTRODUCTION

This section contains a discussion of concepts for the design of a
working scale model of the Space Station which can be operated and observed
in a small test facility. Because of gravitational effects it is felt that
it is beyond the state-of-the-art to properly simulate the elastic properties
of the Laboratory and the Counterweight; therefore these structures will be
modeled as rigid bodies. The Connecting-Structure flexibility will, however,

be taken into account.

A scale model has already been successfully construcfed to demonstrate
the unforced dynamic behavior of a system of this type.* It was possible
to apply torques to this model; however the model could not simulate the
motion if the extefnally applied forces were unbalanced (i.e., the resultant
force had to be zero). Also, this model was not capable of illustrating
deployment and retraction maneuvers. To correct these deficiencies, an
advanced model is proposed. This new model will be capable of demonstrating

the dynamics when unbalanced forces are applied.

It will also be capable of demonstrating deployment and,fetraction
maneuvers. Thus, it will be possible to fit this model with a set of

scaled control systems (e.g., a CMG, gas jets, deployment-retraction motor).

% Austin, F. and Bauver, E. "Scaled Dynamic Model of a Free Rotating Cable-
Connected Space Station," Journal of Spacecraft and Rockets, Vol. 7,

No. 10, October 1970, pp. 1272-1274 (also published as Grumman Aerospace
Corporation Note No. ADN 06-03-70.1, June 1970).
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7.2 SUSPENSION-SYSTEM DESIGN

The suspension system which supports the model must be able to
effectively eliminate the influence of gravity forces and torques without
interfering with the vehicle's natural motion. Gravity torques are
eliminated by suspending both the Laboratory and the Counterweight at their
centers of mass. At each of these two support points, the suspension
system must apply on upward force, precisely equal to the weight of the
member being supported. In addition, the ideal suspension system will
accomplish these tasks without restraining any of the motions of the vehicle

which would occur naturally as it moves in space.

The recommended suspension-system design is shown in Figures 7.2 and 7.5.
This system, and alternative design concepts, will now be discussed. To
understand the design requirements it is beneficial to first examine the

degrees of freedom of the model.

The proposed model has 12 degrees of freedom; i.e., its position can be
completely described by 12 independent coordinates. The coordinates illus-
trated in Figure 7.1 have been selected because they will facilitate the
explanation of the model suspension system. These coordinates are the loca-
tions of the Space-Station center of mass, X, Y, and Z; the Space-Station
yaw and pitch angles § and T; the deployment length {4; the roll, pitch, and
yaw angles of the Laboratory GX, ey, and eZ, and of the Counterweight ¢x, ¢y’
and wz. If the suspension system allows independent movement of the model, in
each of these 12 coordinate directions without providing any resisting loads
(other than the weight-cancellation loads previously discussed), then
Lagrange's equations for the model will be analogous to those for the Space
Station.* As a result the motion of the model will duplicate the scaled

motion of the Space Station.

The proposed model with the recommended suspension-system design is
shown in Figure 7.2. Masses at each end of the modzl represent the
Laboratory and the Counterweight. The two blocks representing each body
provide correct scaling of the masses and mounents of inertia. It is not

necessary to scale the actual shapes.

* The ideal suspension system would have %
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less for the analogy to hold exactly.
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(NOMINAL ANGULAR

VELOCITY)
CONSTRUCTION LINE C4C,
CONNECTING CENTERS
z OF MASS (ALSO PASSES
THRU COMBINED
B ‘ SYSTEM CM)
4>

COUNTERWEIGHT COMBINED

MANNED
CcMm LABORATORY

N

SYSTEM PITCH

x ANGLE
AXES PARALLEL TO z ’
"X, Y,Z AXES
P
/ Y
X
Y

y 4
X

X, Y, Z AXES ARE FIXED IN SPACE

Fig. 7.1 Basic Coordinates For Space-Station Model
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7.2.1 The Gimbaled Supports

The Laboratory is supported at its center of mass by the type of
double-gimbal mechanism used to support gyroscopes. This device has
bearings which provide yaw, pitch, and roll angles (Gx, ey, and 92),
respectively. The device supports the Laboratory at its center of mass

as required. The'Counterweight is supported by a similar device.

7.2.2 Proportional Mechanism

tain the proper dimensions between the end-mass support points during
normal Space-Station operation as well as deployment and retraction
maneuvers. This is accomplished by the geametry of the pantograph-type

proportional mechanism., As shown in Figure 7.3, the loads exerted on this

L + WC by

1 and Vo are the weights of the Laboratory and

Counterweight, respectively. The method for applying the constant load

mechanism are Fi by the Laboratory, Fé by the Counterweight, and w

the main-yoke, where w

Wy + WC will be discussed later. The structure is balanced at the main-
yoke support point; therefore the proportional mechanism must be in

equilibrium. It follows that

Fl,+ F2 = wL +_WC
' (7.1)

Fl a, cos M = F2 a, cos m

For reasons that will become apparent shortly, it is also required that

the proportional mechanism maintain the following value of a,l/a,2 for all

possible values of the deployment length £:

e (7.2)
WL ‘

,N?|FP

If al/a2 is eliminated from the second of Equations (7.1) by substituting

Equation (7.2) and the resulting equations are solved for F. and F., the

1 2’

solutions obtained would be Fl =W and Fé = W Thus, the condition

stipulated by Equation (7.2) guarantees that the vertical loads applied to
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the Laboratory and the Counterweight by the suspension system are always
equal to the weights of these bodies. A massless proportional mechenism
has been assumed so that inertias loads did not enter into the above argument.
The condition that al/aé is the constant weight ratio given by Equation
(7.2) can always be met by the mechanism shown in Figure 7.3 by selecting
the length of the links b and B such that

b “c | (7.3)

) YL

By the geometfy of Figure 7.3, al/a2 = b/B regardless of 4, and substitution
of Equation (7.3) into this relation yields Equation (7.2); thus, the pro-
portional meéhanism shown provides the proper value of al/a.2 for all possible

values of the deployment length 4.

Actually, any.proportional mechanism that maintains the constant ratio
of al/a.2 given by Equation (7.2) may be used. Alternative mechanisms are
shown in Figure 7.4. The extended pantograph shown in Figure 7.4A may have
any number of diamonds; however the number to the right of the main yoke
must be equal to the number to the left of the main yoke. While this mechanism
takes up less space when it is retracted, it is more complex, has more bearings,
and is likely to have more play then the simple pantograph of Figure 7.3. In
Figure 7.4B, the ratio of Equation (7.2) is maintained by a set of racks and
pinions. 1In this design each double-gimbal assembly of Figure 7.2 would be
mounted to a support yoke which, in turn, is mounted to a trolley. Both trolleys
ride on the track shown. Because of the complexity of this mechénism and addi-
tional mass it is considered less desirable than the design of Figure 7.3. |
In particular, when the Space Station is retracted, the moment of inertia
of the track about the spin axis becomes relatively large; For the reasons

cited above, the design of Figure 7.3 is recammended.

7.2.3 Main Yoke

The proportional mechanism tilts about a horizontal axis through the
main yoke is shown on Figure 7.2. In this way, the degrée.of freedom 1| .
shown in Figure 7.l is achieved. To obtain y, the yoke can rotate about a
vertical axis. The bearing is located at the top of the weight-balancing

device as shown in Figure 7.5.
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7.2.4 Horizontal Freedom of Space Station Mass Center

The degrees of freedom X and Y shown in Figure 7.1 are achieved by the
trolley and rail assemblies shown on Figure 7.2. The trolley moves in one
direction along & moving rail assembly which, in turn, has freedom to move
in the perpendicular direction by rolling along a fixed rail assembly.
Alternative methods of achieving freedom of the base in the X and Y direc-
tions include remdving the wheels of the base and simply allowing it to
slide on a lubricated surface. However, the spurious friction forces would
probably be too high. Casters could be mounted to the base; however, the
friction forces would then be erratic. Finally, the base could ride on air
bearings; however flexible tubing would then have to be mounted to the base,
the air pressure would have to be carefully maintained, and the flexibility
of the air cushion in the vertical direction might cause problems. For these

reasons, the design illustrated in Figure 7.2 is recommended.

7.2.5 Weight-Balancing Mechanism

The remaining degree of freedom which has not been discussed is Z in
Figure 7.1. In addition supplying this freedom in the vertical direction,
a vertical force equal to the weight W of the entire structure must be applied.
This force must remain constant as the structure moves up and down. Counter-
balances are not acceptable for this purpose because the applied force would
vary with the acceleration. Also, gas-type hydraulic mechanisms were con-
sidered and discarded since they would apply forces which are to a large
extent proportional to relative velocity and displacement. Constant rate
(negator-type) springs are not considered sufficiently accurate and have too

much friction.

The final design shown in Figure 7.5 is recommended since it is believed
to be far superior to the concepts discussed above. In this design, a cam
compresses two springs as Z decreases. The cam surface is designed so that
the vertical component of the load applied by the cam followers is always con-
stant and equal to the required weight W. The equation for the cam-follower

curve can be obtained from the geametry of Figure 7.6. Since the device is
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assumed frictionless, the resultant load F applied to the cam follower
by its bearing is normal to the curve as shown. The horizontal component

is X (X-XO), where XO is the value of X when the spring is undeformed, and

the required vertical component is W/2 since there are two springs. From

the geometry of the curves
ay KX-X))

tan O = 3% = —m

Integrating,
2K (1
Y_W(Exz-xox+c) (7.%)

where C is a constant of integration which is determined by locating the
curve in the X, Y plane. For example, one way of obtaining C would be to

specify the value of Y when X = Xo'

7.3 SPURIOUS EFFECTS

In order to avoid spurious loads on the model, the ideal suspension

system would be massless, frictionless, have perfectly rigid members, and

no play in its bearings. Then the suspension system would not apply any
inertia or friction loads on the model, nor would suspension-system vibra-
tion influence the model's motion. Thus, all bearings and other wear surfaces
should be as friction-free as possible and should have a minimum of play.
While light weight and high rigidity are to some extent contradictory require-
ments, the designer should make use of light rigid materials and cross
sections such as I beams and tubes. .Simple trade-off gpproximations between
weight and rigidity can be made so that the lowest frequency associated with

suspension-system vibration is at least ten times the highest model frequency.



APPENDIX A

FLUID MOTION DERIVATIVES

The following derivation is an extension of the derivation pre-
sented by Shapiro*. The main difference between the two derivations is
that in the reference the control volume is fixed in space, whereas
in this report the control volume is fixed to a structural mass of the
vibrating rotating Space Station and therefore moves in spdce. Consider
any vector quantity 3, that is a quantity per unit mass of the fluid.

For example a may be the linear momentum of a particle of mass dm. The
total contribution of 3 to the mass present within the qontrol volume

at a fixed time is

=j5</m =[;93/° o/ | . (A1)

Sy

where the SY indicates that the integral is taken over a system of fixed
fluid mass particles. As time varies, the boundary of this system of
particles changes, so that it will no longer coincide with the control-
volume boundary at time t. Referring to Figure Al, the mass contained
in the control vbiume shifts position and has the indicated boundary at

time‘t + At, At time t, the fluild occupies the volume designated by It

and IIT,, and at time t + At the fluid occupies the volume designated
» - ° . -’ -
by It+At and IIt+At Then, the inertial derivative of-g is

At->0
At

@kf) =Limn (’tmt Itmt)‘@;t+a;Lt;]

% Shapiro, Ascher H., "The Dynamics and Thermodynamics 6f Compressible
Fluid Flow," VI, Ronald Press, N. Y. 1953, P. 12-20



BOUNDARY OF FIXED-MASS SYSTEM AT TIME t + At

TYPICAL MOVING BODY AXES FIXED
IN A STRUCTURAL MASS., CONTROL
VOLUME IS FIXED RELATIVE TO
THESE AXES

Fig. A1 Motion of Fixed Mass of Fluid Relative to Body Axes
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- .
where the subscripts on G designate the associated volumes». Rearranging
terms,

At o

(/ —- ‘ . d _-‘
(dj) = L g-rt-mt Z.L‘t + Lirm gJI

t+a+

At at—>o At (A2)
L, G
-y Et
4 at

The first term on the right may be evaluated as follows: .-

Z;Z;-oo Z—’-';At_ 5’-1’-: [Q(oa/v fﬁ(oa/v

i-so
a ‘t’ 4 -(-+At

at

(A3)

f@,oa/v

S

where CV indicates that the integral is evaluated over the control
volume. The final limiting process shows that the above derivative
is computed for the variable-mass system within the control volume.

The second term on the right of Equation (A2) is

_L;"7 Gﬂ%mt = Atj 5(00/?/

At>o0 T At-ro
- at -t-rA{-



A4

If ? is the fluid velocity measured by an observer fixed in the body
axes, as indicated in Figure L4.4, that observer would measure the
amount of mass passing through dA as being equeal to pv . ﬁAtdA; i.e.,
in the above equation, pdy = pAtV . dz where dAQ = flaa. Thus,

: G .o D Ve /27
%;? 3 Glrt-rdt :At-,OZ'.EJ/ g)(oAtV a//)
At ' -Dzbinat
:J “5157.479" | (ak)
cs
mass
out

where "CS out" indicates that section of the control surface where mass
is moving out at time t. The last term in Equation A2 is evaluated

similarly, and the result is

Livss GI‘I = = 5(07’0/;;
at-»o 4t cs

mMass 4n (A5)



Substitution of Bquations (A3-A5) into (A2) yields

) = o[ [Sodv j;-’ v.JF7
(?-7_? s ﬁ(L?P ')5 tyee - -

cs

Eguation (A6) is the desired result and is nearly identicel to the
result for control volumes that are fixed in space. The only difference
is that here v_is the velocity of the fluid relative to the moving
control volume and ? is measured in a rotating coordinate system which

is fixed relative to the control volume.
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APPENDIX B

RELATIONS REQUIRED TO CONVERT THE EQUATIONS OF MOTION
FROM VECTOR TO MATRIX FORM

The equations developed in Section 4.2 are in vector form. In order
to facilitate the conversion of these equations to the matrix form re-
quired for computation, certain notation and relationships are used. These

mathematical tools are presented below:

Bl. Coordinate Transformations and Angular Velocities

The axes of the coordinate systems used herein are always denoted as

the 1, 2, and 3, axes; for example, the Z coordinate-system axes are Zl’

Ze, and Z3. All Euler angles are similarly denoted; for example, the set
of angles used for the coordinate transformation from the Z to X axes
of Figure 4.1 are called ¥, and the specific angles are Y13 Yo» and Y3

The order of rotation is always as follows: the number 1 angle about
the 1 akis, the number 2 angle about the carried number 2 axis, and the
number 3 angle about the twice carried number 3 axis. This is illustrated

in Figure Bl for the angles v. ‘The z‘axesfhave been translated so that
their origin coincides with that of the Z axes for the purpose of deter-
mining the coordinate transformation from vector components in the g

axes to components in the X axes. The matrix function (r¢ )] is always
used to denote a transformation between coordinate systems; for example,
Figure Bl, the transformation of the components of a vector {V} from Z

coordinates to.§ coordinates is written
(v [=Drendiv, i . (B1)

and, since the coordinate transformations are orthogonal,

' T L= T
iVl =[] {v,i; e, [TT(8] =[] (ma)
From Figure Bl

[rery]= e o] A@)] (82)
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where [A(y)], [B(y)], and [C(y)] denote the first, second, and third

intermediate transformations, respectively. From geometry,

F-, O @] ]
Dq(aa)] =] 0O cos & sm Y, B (B3)
.0 -s/2 ¥ cos¥
cos XZ o] - S/ b/z
[B(X)] = o \ o (B4)
lsm¥, © cos¥,
- -
| cos¥3 smil; O - |
[&(‘()J E ‘ ‘S/;? (3 cos xa o B ' (35)
| . o o T o |

The above riotat.ion is used throughout for all of the coordinate systems;

for example, the angles E locate the Y coordinates with respect to the
X coordinates, and the notation for the corresponding transformation

would be [M(M)] = [c(Mm)IB(M)ILA(M)].
Similarly, the functional notation [S( )] is used to convert Euler-

angle rates to angular velocities; fqr exampJ:e, if {wX} is the angular
velocity of the X axes with: respect to the Z., axes, prdjected onto the X

axes, we would write

;wx?: [S(X)j%?g | (B6)

where {y} = [vl Yo y3]T and, from kinematics,
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cos ¥z cos ¥a S/ 3 o (
[S(zr)] = -Cos XZ S/ 83 cos K3 () B7)
Sy If,_ (@) |

B2. Cross Products

The functional notation [T'( )] is used to convert vector cross

products to matrix form., For example, the expression ; X ; would be
written as [T(x)]{y} in matrix form, where [T(x)] is defined so that
the components of the products in the vector and matrix forms would be

identical, This definition yields

© ~¥3 X
["‘(z)] 2l xs o -~x (B8)
- X2 X, )

B3. Useful Identities

Certain identities which were employed in the analysis can be

developed using the notations introduced in Equations (Bl) and (B8).
These identities are first listed below, and then their proofs will be

presented.
[ >]T= - My (B9)
For any scalar « and vectors {x} and {y},
fl“(gng)] =« [P(x)] (B10)
PGafrighy]= TPeol+ Peg] (511
[reolfet=-Lrplixf (512)

.
-GxH80)i3

{
¥Fi
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[P(EW(K)]fo )] = [;f(x )]EF'(Z)J-[‘TT(()]T | (B1L)

“1f {w} is the angular velocity of the X axes with respect to the Z
axes projected onto the & axes and Y is a set of Euler angles used to

locate the X axes with respect to the Z axes, then

a;‘;/- [7¢¥>]= - _Ef'(wx \)_’14[_—7/'(;)] N (B15)

Another iQentity involving derivatives of the transformation matrix
4 (rmn)imen]” = —[mm (me )

(B16)

The following identify applies only when y can be i_inea.rized:
E77( ¥ )] = D']— [__f'" (()] " (within linear terms) (B17)

where [1] is the identity matrix,

The following rela.tlonshlps apply to moment-of-inertia calculations.
If {X} is the vector (expressed in X axes) to a differentlal mass dm
of a mass system (see Figure B2), then the moment- of-inertia matrix of

the mass system about the X axes is :
[I]: -_g‘ D"(X)JZ dm (B18)

where the diagoha,l terms of Equation (B18) are the moments of inertia
and the off-dia.gone.l terms are the negatives of the cross products of
inertia. To compute the moment-of-inertia matrix ([IX]) about the X
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axes when the matrix ([IYJ) about the X exes is known and the origins

of these axes are coincident, the following equation may be applied:

T Bl
[1,1 =TI LT, [T ()] o)
where 1 is the set of Euler angles locating the z axes with respect to
the ’)5 axes. To transfer moments of inertia and cross products of inertis
to a coordinate system which is both translated and rotated with respect
to a coordinate system with its origin at the center of mass, a generaliza-

tion of the well-known parallel-axis formula may be used. This formuls is
[z 1= ro0] [=10r]-m [Fx ) (220)

where, referring to Figure B2, [Ic] is the moment of inertia matrix

about any axes Y through the center of mass, [I] is the moment of
inertia matrix about the X axes, 1 is a set of Euler angles defining

the orientation of the Y with respect to the X axes, m is the total

system mass, and {X } is the vector from the origin of the X axes to
the origin of the {Y} axes expressed in X axes.

The proofs of Equations (B9-B20) are as follows. Equation (B9)
follows immediately by forming the transpose of Equation (B8) which is
skew-symmetric.

Equations (B10) and (Bll) are also rapidly proved by direct sub-

stitution of the argument into the definition of [I'( )J, Equation (B8).

: N N
Equation (Bl2) is proved by writing the relation x x Yy=-yXxXX

in matrix form.
Equation (B13) is proved by writing in vector form the relation

-+ -+ o + 99 2 4
for the vector triple product: x x (yxz) =(x . 2)y - (x . y) z.
To prove Equation (Blk), as previously let Y denote the set of
Euler angles orienting the X axes with respect to the Z axes. Also s

let primes denote vectors projected onto the i axes, whereas the same
symbol without the prime represents the same vector projected onto the



—
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 Fig. B2 Coordinates Used to Express Transfer-of-Axes Relation for Momont-
of-Inertia Matrix
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Z axes. Then {u'} = [M(v) Wu}, and, since [M( )] is orthogonal,

-» -+
vl = [1m (v) T {v'}. Since the cross product of u and v formed in the
X axes is equal to the transformed cross product written in the Z axes

FEralublv'i= o]l |

This relation can be written for any vector {v'} (in particular for

v} =10 o]T, o1 ojr, and [0 0 1T%); therefore Equation (B14) follows.
In proving Equation (B15), the primes have the same meaning as in
the above proof. In addition, {wx} is the angular velocity of the X axes

relative to the Z axes. If {fu'l is any vector in the X axes which is a

constant in this coordinate system, and we differentiate the relation

fu} = [n(y)] {ul,

0 = (a-;{f [V(J)])fcc Ja I_'fr(x)]j% juf - (a)

- -+ -+ -+
But d u/dt = Wy X u when U has constant components in the X axes, or in

matrix form

reey] 4348 = [(w, )15 (v)
58t~ [, 1t
Combining Equation (a) and (b) yield,

(57 rew))jut= -Ir(w o liu

(3 el Fwlict=- ol
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This relation can be written for any constant vector {ﬁ' }; therefore
Equation (Bl5) follows: |
Equation (B16) may be verified by substituting Equation (B15)
into Equation (B16) and using Equation (B9).
Equation (Bl7) is easily proved by linearizing Equation (B2).
Equation (B18) may be verified by substltutlon of

{X} = [X X X into the equation and carrying out the matrix multi-

3]
pllcatlon. Equatlon (B19) may be proved by substitution of the

relation

fx} =L iY}

into Equation (Bl8) and subsequent application of Equation (B14).
Equation (B20) may be proved by substituting the foliowing expression,
obtained fram the geametry of Figure B2, into Equation (B18):

| f*f?ixﬁ r rep T30 Y
where (Y} has been expressed in the {Y} axes. Then
[z 1= (x5 m +Irex )1yl (¢ Y)]Jm)[%//)]
T T ([0 1dm) T MK
x Er_(/)]T( j r(ry]rey))dm) Er<f)]>

Since the origin of the Y axes is the center of mass,
5 [r'( Y)]o/m =0

Using the above relation with Equation (Bl8),' Equation (B20) is obtained.



APPENDIX C

PHASE IT COMPUTATION PROCEDURE AND SUMMARY OF EQUATIONS

This appéndix contains the computational scheme for the Phase II
computer program and is followed by a summary of all requifed equations.
The equation numbers referred to in the procedure pertain to equations
of this appendix and not of the body of the report. The appendix begins
with a list of required input data, including all date that will be
automatically transmitted from the Phase I to the Phase II program.
Section 4.0 contains the definitions of the symbols used.
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INPUT DATA FOR PHASE I1

I. BASIC MASS DISTRIBUTION AND FLEXIBILITY DATA TRANSMITTED FROM PHASE I

Specify if any of the following constraint options are to be used:

Laboratory is rigid
Counterweight is rigid

Space Station is rigid

Laboratorx

This data is obtained in either of the following two ways at the

user's option:

® Phase I is run for the Laboratory, and the data is automatically

transmitted to Phase II1

® The data is supplied by the user

The data is as follows:

Ttem Notation .
Phase T Phase TI
Number of mass points n
Undeformed mass-point locations (fi, Yi’ 71 r
Mass at each mass point. (If data m,
if being transferred from Phase T,
*
[mX] is block diagonal with 6 x 6
blocks. m, is the 1, 1 element of
the 1B block)
Moment of inertia matrix for each (1, ]
mass point. ([Ii] is lower right
3 x 3 of i®8 piock described above )
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If the Laboratory is rigid, the modal quantities listed below

(p, L8], [ul, wi) are not required and will be ignored if supplied.

i _ Ttem Notation
, Phase T Phase II

Modal matrix EQX] [e]

Modal masé matrix corresponding to (1] ' (s ]

no. of modes used (max dimension is

20 x 20; matrix is diagonal)

Frequencies corresponding Q. w;, i=1,...D

to modes used

B. Counterweight

- = - =2
If the Counterweight is rigid, the modal quantities (p,[@], L], wa)
are not required and will be ignored if supplied.
This data is obtained in either of the following two ways at the

user's option:
® Thase I is run for the Counterweight, and the data is auto-

matically transmitted to Phase II
® The data is supplied by the user

All data is the same as listed in Section IA for the Laboratory.
The Phase II notation for the Counterweight is the same as that
listed in Section TA for the Laboratory except that a bar is

placed over each symbol.

II. ADDITIONAL BASIC DATA

Initial Laboratory displacements and velocities:

: X
Rigid Body: (R}, (R}, {v}, {u}
. ¥ “fe A .
Elastic: {qi}, {qi}, {ei}, {Gi} (1 = 1,00, D)
Initial Counterweight elastic displacements and velocities:*

@), ), B, @)

%* These quantities are not required if the structure is rigid, and will be -
ignored if supplied.



C4

Percentage of critical damping for each mode:

For Laboratory: v (k = 1,..., P); Ve 18 constant on default

The \’k are not required if the Laboratory is rigid and will be
ignored if supplied.

For Counterweight: v (k = 1,..., D)3 T)k is constant on default

The ;k are not required if the Counterweight is rigid and will

be ignored if supplied.
*
Connecting structure data:

2 6s, B0, 6, 6 8, 0 g, g, )

A subroutine is required for Comecting _Sjb}:uqture loads when the
Space Station is not rigid. The input data for this subroutine is
described in Appendix G for the case of a beam.

ITT. ACCESSORY DATA PACKAGES
The following data packages may or may not be present.

A. TFluid Package
Clue stating whether fluid is present. If present, the following
additional data will be supplied:

Subroutine of V and V versus t. Input data for this subroutine

is described in Appendix H7
p and A
Reservoirs:

Mass point number containing emptying reservoir

Mass point number containing filling reservoir

o *. o A
* {6}, {5}, {¢ }, and {¢} are not required if the Space Station is rigid
and will be ignored if supplied.
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The following data must be specified for each reservoir:

P P P R R B B B,

mi, [Ii], {Si}, {ei}, {ui}, {ui}, {ei}’ [Ji], bi, hio3
P

i max’ i min’ {Gi}
Through pipes:

Data specifying which masses contain through pipes (30 max).
f f ; '
For each such mass: m. ", [Ii]’ {Si}, {Aui], {Aei}, {Gi},[AJi],{AHi3

Moving Ma.ss Package

Clue whether moving masses are present. If present,.specifyng

(j =1,..., 8 max). A subroutine is required to obtain the

following for each moving mass:

Motion data: {Uj(t)}, {ﬁjﬂt)}, {ﬁ;(t)}

Values of k denoting the masses m which influéhce_uj.

In the subroutines provided with the program, pé.is a balance
mass and its motion is determined by & control system. The

input data for this subroutine is described in Appendix H13.

The undeformed motion of the remaining masses is cammanded

by Subroutine MUCOM. The required input'data is described in
Appendix H5.

Subfoutine LOOK determines the values of k denoting the masses
mk,that influence the motion of uj. (A maximum ofAi6 m 's can
influence each uj.)' This subroutine is a table if k's versus
time, and must be provided for the particular structure. The

subroutine_fequires no input data.
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i
C. Control Systems Package
. . , ,
Clue whether control forces {fZ}, {Tz]’ {Eca 1, FFca } are

. present, If present a subroutine or subroutines are required.
The input data for the subroutines supplied with the Phase IT
program is described in Appendix H,

D. Supplementary Forces
Clue whether supplementary forces are present: {f:}, {T:},

{fsa}, {;sa}. If present, a subroutine is required.

E. Print Out of Structural Loads
1. Connecting Structure:

Clue whether structural loads applied by Connecting
Structure are required.

2. Laboratory: _
Clue whether internal structural loads in Laboratory are
required. If required, the following data is supplied.
For each load-computation point: 4£', {tz,}, index numbers
of mass points comprising free body.

3. Counterweight:
Clue whether internal structural loads in Counterweight
are required. If required, the following data is supplied.
For each load-computation point: Z', {EZ'}’ index numbers
of mass points comprising free body.
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Gy *>1= G 1 el L Pyl Fes ] (a5)
see gt Tl ~7)  take arc sines
A Zigtez (46)
sw 7" = ;:—SZ‘ Z3a sf') .
: _ (typical)
S(}rz‘e - /‘. %/gf’)
//u% -
577 = 5pmf 4 {3f (#68)
ces Pacos s} soo ff o
[= (¢*):l= S P cogt o f% (‘] (typical) (A7)
Ser L3 o !
_ - P —s0 4 o |
S(gnl=_t |, dfomrs o fiaodt o (typical) (A8)
f“’¢$ ~Cosif ser S(—/f; 90//; ces g5

1;°F = 50 Breg 3T ( broesTres M (G 1} breeillrg e h-1aD (4£9)
S/(/r)’{ = [—7//)];&)"? + E&f/)j{/'?z (A10)
Wis L f+S5F

SOf- S F e it 5 (A11)

| fﬁf"‘ﬁ'{%)ﬂ@@;ﬂj}ﬁz})-?@?—ifz%+E/‘(fﬂ(f§-}+%}+(§f@)ﬁd> (A12)

(A13)

R ARINCHI D) ) ‘



c-27

%E ; == 5—4,8)_} 5,/ ; {/L, g{ +7%,)](§Q { 4-;,41’:‘)

CEL 7= —L_7/’ﬁ)_7 5/7; /
CELf F‘z//,;'] 7/;'(

bl - kB
SEE§ = SEf-3E.F B

$77= CoeriT Sw”? 7 =[50 (w7

| g = 1:57)3"(7&/’{ Ty 50 F)
321 = e (C 03+ Dres: 51 Cu 1505 oy T 5857
K= zm BT ¢ £ 5wl R

§2f{_-—_ Greed (Feecsd(n? § 858+ (B1+ oo Db 9 sausf+ Farsis: 1) |
+ (G1+ G(&zﬂ)([‘r(s; @3- Geord) €57 + 4, Qa3 [T 15Y)

- 2af 6570
(/)7 +) f("’ ) vE
vt SO TTCE 1o F ks 95T
+ FRF (D_')-i'ff?’&‘;)_l)( Tew=213s, 7 ré: 3aii?)

/

fl:? = same expression as (A20) but with k, =1
~..—4/( §ﬂ { +V ) : , Z
S T A =~ R VL SR PL SE LY.

* ‘5'?“}7(53*3"66‘22)(5660"‘)]?s,—Z+Q;u//?) S

s/% - < [7ee ] [FGra+ 5w 3)GE 5450, F + 7w * 157450, 1))
K% 2 o GE§50f + TwlGerssy w7

Lt Dol Ty I G ) w0

7 Tl Tl [Eynses+ize+555 smo] £,

(A1L)
(a15)
(416)

(A17)

(A18)

(A19)

(A20) |

(A21)

(A22)

(A23).

(A2k)
(425)

s

e Ll = Zyd(5E7 1 TewIIel) + sEgt +Trwilfef Suf +$7e)

- T xS
for #3507 F =TT + 4 7, { R, f’j

(A27)
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fzrxt= 2 (iR 1+ (0T1+[F@))is:7)
{Z'LX}:‘;”Z'{R;; '

tzmxf = Z4; (SRT 9w ) . e
fzevt=m, (B TiRE+1RE 2 7 G2 1+ {7 p)
leemp= Gl Gzrxirizixfeizmxps Grgpl§zerf) (A270) .

M. + M, tZ 4 +3 m?
).. .

ips 7 = M. bree > 1(011- [regg >]) [rcw” 1" (3 1209 BropllenTizcm ) (a27c)
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Initial Condition Procedure
Mean Axes

Lab Displacements:

invert &

Mg} - [o] 00, - =2 i
: ; ; = " solve (A28)
[D,,]ff,x; +£Il_]§,ga§: —; "”;[’ﬂ“’:”?;,'f __Z__'[I,']{a,‘lf ‘,
where: : . ' S
Mos 2o [T]= 2{1L] -?rf,'ll'(vj-)]z) L, LD 1=2 a Lrir] (A29)
§é. b f(e"l} ""{90} 4= TP ' _ : (A3O)
{f:} b {f‘/g * gfoé - [F(C)] g ea f //'=/,.../ » ) . (A3l)
Greo) = mea Y] rar)] o | (A32)
e 8 =T (0 gl <%
i ¥y = - T, )/ cos 5, o %)< L4 use inverse

trig functions (A33)

o ¥y 2 =T (V) [feon Y, (typical)
' 0 s¥ a7 .

cos ¥, = Trn (V)/wx ¥, (note qua.dra.nt)

RY= TR {ad | (a3h)

Counterweight Displacements:

Mg - (01181 = -Emt ; ) invert &
_ _ e } solve (A35)
[D Mg} #1118} = -2 A [r(R)]ig. —z[_r,]{e § :

M,s'zﬁ AR J=Z([I..] AT I [Dczsﬁ_ﬁma)] (436)

' t6af = {88 + {81 = (a=,,,.., %) (A37)
'zf.%= THE R1 - CNFONEL caeg, (438)
[r*)]= s >] 74 >] [ree>] L_W/ )] | (839)
1R1= o Tip TR - 147 (k0)

()= My Tip)i R (A1)
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Lab Velocities:

M, fge b - [D116,} = - P RATI | } invert &
| solve (Al2)
[q]ﬁ,{,ILJ§Q%=-é¢@[rnn]y}!-équ{QX
6,3 =16/t + 16,} (=g, n) (A43)
TRRRTSRATE -Irer)1§6,8  Cizy, m) (Alk)
fu} = Grea Tu®}- 187 (845)
(Equation deleted) _ (AL6)
Tk = b Tie b s HR -1, | (ai7)
Counterweight Velocities:
R ARSI RS T I | }invem&
. . = . A _ =, | solve (a8)
[0 1ig,! #IT.188,k = -2 A [ridlf g’ f - 2 1T, 16 ]
{a;:;é;}Q-fé} Casy .., %) (A49)
TARRIFN [2,8 - [F(PD118,}  Ca=y, 7D (A50)
Jut= DrcaTtu 114} (a51)
(Eéuation deleted) | (A52)
fw™ = fw' - [T(p)]fw™} | (AS3)
& f= - [ lren i, b rep Xy, V@Y7 §+Frg iR 1157

(ash)
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Physical and Modal Matrices

T 7
(28 ) &,
I & - a _
g/,{:{l AR g8 - 5 - | , (A55)
e 7
o N
(7,121 | | i
D:‘]m,,[‘:a]
, =
M1 = | . - (456)
m, Uig]
bl e . |
ma Ll i ‘ . N
RREA o N
[7] - o .. o (457)
| ) l"'J',-,Dsj - '
T
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Initial Values of Generalized Coordinates

[5']= [«TT3T [m] ([u] is diagonal)

Tet= C8Vgt 5 $27- [alis]
(&3]~ [/7]-' EETD'A’] ([p] is diagonal)

izf L1zt 5 58- L& 157t

Modal - Constiaint Matrices

Flexible Connecting Structure:

; Rigid Lab: |
T Width of & shrinks
: | to zero
[g] =[2]= — —f““l Rigid Counterweight:
]
ey Width of § shrinks
. to zero
o
L L_J
Rigid Space Station
= ha * - . —
g )
e 6n+3
6(n+n)+6
- - = =1~ 7
[g] = |0 121+ [, el s
0 6n
Integration Coordinates
) (. )
(,e R
¥ w
j 5 w t
igr} a7 ( }’}T}: AR 1

~

vl

.
~
.

* These numbers are submatrix dimensions.

(A58)

(A59)

(A60)

(461)

(A623a)

(A62D)

(A63)
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The height p of {€) and {E} shrinks to zero if the Laboratory is rigid.
Thé'height 5 of {%} and {é} skrings to zero if the Counterweight is rigid.
: . . - -: * - :

The heights of (£}, {€}, {aR}, {aR}, {M'}, {wy}’ {€}, {E} a1l shrink to zero

if the entire vehicle is rigid.
Fuler Angles Orientihg Reservoirs

Mza (3D = 3-84. } > 71.:“ <3‘) =0 (A6)4')
M33(3,)
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Main Equations

(Equations deleted)

36:f = 3£F+50n 1+ 57

$857 = 3:¢ + Uewei?
jox'(= (01- O(e:0)30"F +34 F.

@ =AY
PV

Reservoirs

Af 1= 74>

) t
Aoty - A vk
l[ia-

C”S(.L'), “-4(_}:‘)3 @/K').: o "5""(!(),1 Vi o

L_7’( 3 )] =
-saeB), @(l), off o t - o 0 a3, sl
o 9 i5B0a 0 @@aldlo -ska), wdl),
(typical)

£_ P £
ﬂ/ —”‘. +”Z‘

S = 3487 -S4LF «4: 3eF
$sif= $SIF vt (5410 - £ 4 S
36: F= 3650 +4, [rewry13e8¢

_ (387 4>) " o o
D—z}_@f[ o  G4+47) o ]
72 o o (475

gt = §z/,.‘"{ X4 E’(?‘)JT)g,‘?Z

[=f1= [=f]+ B3] LBl -2 frees 51

r PN

(&3#A7) o o |
[”-J=‘£‘Ql( o 22) O J
* ; o “ 2 R47

(1a)
(1b)
(2a)

(2b)

(3a)

(3b)
(3e)

(k)

(5a)
(5b)

(6)
(7)

(9)
(10)
(11)

(12)

(13)

(1k)

(15)

(16)

(17)
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4574 va rij’{?{ | - (18)
f-_r*] Grrs )] CE G751 +4- 9 [rees 3 ° (19)
—” [reas yirees Y1-77 L_'Zz/ )]E‘C(t ﬂ'
Moving Masses : .
Sdif= Ty f- St (20)
7= 7 (4 (o1)
¢Fb)
= o | (22)
e |
7 . |
swF =54 ;;q}}' ; CAL [eaes154 7)) - | : (23a)
ini= 500 SUNGR TeaKdl Ty D) (23)
. % ,
PRSI RN S o (21)
$Ef= 550?1—?45? | ' (25a)
§EP=3E k] o . (25D)
(Equation delgted) (26)
fwl= (U1-Lr@EIDiw l + (83 | | (27)
Orientation of Connecting - Structure Axes in Counterweight
§ohe t %«ug 7% o (28)
) o<33 ' .
(°<3, + °<3.z <33 > . l (29)
; ‘3¢ % %:;’-‘:% = ZZ" §°(34 ; : | . | (30)
54; {= g:“ % [rgyeg )19 v* (@ | | (31)
Qs
€ = (el el )P | - (32)

+

S, 1= 5«n;=2’—§°§zf . | | (33)

o2 ¢
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5‘\’/4' :\: -

) } = Tt T 7

e
~Xon ~\2 olrz

ET(;;}]: XK Z1 ar X3
34 .-#3‘ Yoak

Equation (36) appears on next page.

Accumulation of Loads . .
$ht=- [_'7/“(%, SAGree>] Feg s 1ite

S7,7= - o)1 Frges) e A T
SE1= Drpsl'sh?
snl= el (Gt Dwlfel)

ff?= @1+ T DCETHET)  for 774
#F= (GA+ o GE T +5£8+SET) for <=4

0= (C1E@EDGRISEE) for epa
%PLFz([__'j4’[’-"(§._)]>({;:'?*§;:¢ *gf;;) for @ =2

STt =Szl +§TET for im i
$7¢¢ = §ré?*_§r;_?+frgf+ E‘(d-ﬂ%f:elz for (=<

Szef-§727+522F forata
Szef=Sz2t+572 {+ T 0+ (it
vRight-Hand Side' of ‘.Equations of Motion
oL f= Solf+ SPE
AR AR I
$vyf= §uste {7

Sogt =90 f+3T4F

(34)

(35)

(36)

(37)

(38a)
(38b)

(39a)
(39b)

(koa)
(Lob)

(L1la)
(41v)

(k2).
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L

™ & e ®

' h\q}

b

%

~

V

NES

\\-!0&

d’dqi “q:n tvt

) =[rew >]/

P71 D+ [Fes]
[R*1= [rrdllrenT
[R]1= PR +imt+iz D]
[s<1= [1 ]+ [re& ]

C-38

(L43)

(k)
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Laboratory and

} [Q] Matrix
D‘ Dz_
Lol=].,
Ds
e
where:
io] i l, O -, 0 ]3 0
] | G: Pl A Ol Pz Q" F"
. T r
-{D ]- [Fef O [} o frn]” 0
“ 1R o0 rR* O R\ O
o=l 5 ¢ L9 L O
R" § R S E".S

(45)

(45a)

(45c)

Counterweight Modal Stiffness and Damping Matrices

. %D:
. G
[CM },:
L p
TE‘:' “1
_ o
G =
i %5
o
. . k‘llA
[/(‘] = . ]
Kep
"R
[<] = g
- -

th Cﬂ-z%w- .
s LA (46a)
with &5 =21/ & 4.,
(46b)
with .= ',
(L6c)
with A, = &  u«,,
(L64)
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Modal-Constraint Reduction of Problem Size .

A, 1- WITe1IAIT8]

1= - D isf - Cemdis?
SE7= - [REFI-nli ¢

5o]

(= < i“:z $ , where {Oé f= {

ki

Height p of {fM} shrinks to zero if Iab is rigid

000000
W

Height p of {f‘M} shrinks to zero if CW is rigid
{Fm} = {06} if entire vehicle is rigid

$%1= [pT TolVT +S$Fuf
[An]jif = {VR E

Transformation to Physical Coordinates

g} = LAT{E L

fxi = LZIIF |
(£ = [#1{s} J
where:
(# (é
¥ a')"
$: j
e, 1 e
{5}:‘44}¥ %X}:wn';y
7 w"
7. A
8, 5'9
X L

(Equation Deleted)

(Equation Deleted)

(47)

(L48a)
(48b)

(49)

(50)

(51)
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Connecting -~ Structure Deformations

(Equation deleted) , (56)

iV*) = a (0715///275- 5/4‘@' —s7 f{ —s///;'é" )
e = 7 s
72—‘;?’ *) = Swz"éw/' +Qoz'50/z;"s<7" .

R e e
Tar "7 - sogten

Tongg™ = 2(a2er'y sidg - s sy ) ~ Spsir gy gy (57)
T GO = A ey " A e ey |
ENZAPEI S
Tty = i
Ty = Al n e g e )
S5 f= )_"7/—46)]( §487 + TP Aol (ni+57)
- %/(J MREC OV CFIN +[r(8 ) e 7) (58)
- &l 3R 1 ;&p@mr iz F+(L‘J+Lr(&ﬂ)§4?>))
547 = 548+58F (59)
347 = Bpil(o1 - Oxa AP (31 Groe 07501 - 52¢8) - 327 St
- Tyt 0By (347 3 f + (G 3r Teog Dsad) (60)
+ ol 7+ 08015280 -
$sF= 507 -541 o (61)
Brpml - Gl By -G DBy a0 radesn”  (e2)

St Tscg i) (Gresaogwslis, § - Trigs] bl ra D9l F52H) (63)
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Loads Between Modules

Laboratorx:

fwgf= o f- I 1R 8- (A 15> - [Nodigf - Cas i % (64)
. §= Z it | (65)
{Xpt=dn, z"fjjrf+(C/]+EF(%')])H-1,Z - (66)
X b= AnFeipt-ix1 - 67)
{wil= [r(x,f);l?w;% (CI+0ree D (Tv -T2 157 }
NS - TN T8 1 - DA 14 1) (68)
(740 = 3 iuif (69)

Counterweight:

7 f = {fo T &P - T 1™ b A T NP BE (70)
_ gé;f = Z:{A;?;

(71)
O =47 Pl 1 (01 (g 01) 7. 4 (72)
Dt =42 dE - 0 ] (73)

{7 § = POp 17> P40 T+ Creg > Gl t- [as T F-In 155 ¢ (74)

{725;=§z’zrv:;_ B | (75)
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' T TABLES
Newton - Laboratory Mass —

N1 L[]
D -m T |
3 0= (2 Gew ke 7+ D17 S £:F )
- Euler - Laboratory Mass | | | ‘
Dol =AGT-0es D)
Dyl- =1 |
§557= - 10 L + [rew™ 1 B2t J500™F
Jewton - Pipe
Dil- 2"
[Xi1= (// [Fee: Y] +(C 1+ Crese 1) Tts: (G - Tree: 3D)
[3§] =~ 1+ e Dese ]
$si =" (2 w3136 { + [ Se: )
o (01 + TS 304 Trag [ ST+ s £+ voise 1 s I 5F)

Euler - Pipe
D21 = [esool(@ - Grese 5D
BHE L’I’c](f - T3] - Gres: (0 3- Tres=DTree ]
AN e
S5. 8= [Fews D(@ém G 150%0) - Bl s 5077
oV BRI +§ 56T v Sak F
s 1(Ga- CF(& )])(x [rew*)1s; €+ Lf‘(a))‘ﬂz§2 7))

© Newton = Reservoir

Dl 2" 1]
DT = (e Tree ]+ (07 + Teer sl ) Tree: 51(G 1 - Tese SO
DY GNP 1D [res:y]

$3L7= 277 (6 Tt NEcf + w562

+(02+ O D (4 § 304: ;+4>v(§eef 4 §e*‘-’(> b 29 T 3pg - lin<l¥sd
+I& e P *?)

Euler - Reservon-

Dods NG 1-Teeil)
D= Lo Uea-Tee ) -es: >’_I(EJ e 1) Teed]
Del- &1

3. 7 = [6sol(@1-TraD) (2 Trawolief fLr(zw] 2t ) - [ 106 5)s w*f |
+{2£] +beeV (_—TB_'D;LU" ¢+ Lrew= ) (v Plsw g +b 956N Ai 9§c¢
rov(teslest - e T liete)
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TABLES (Continued)

‘Moving Point Mass
Lei$ 1= 400
sy e g Oreerwd)

[oxp?] = "y (Feaso]

[oge] = (0 3-T¢ge) Erw;f. )
[er?] = [Tzt
[ty 1= Dxgellicar']
Lo’ = [oge I ]

forr? = g (2 T D58+ + (e 150w f + S G
v T%5r (3 [Fese )5 08 0o 515 3.0))
2

(B S Locge 1§ (ﬁ/)“;

Newton - Counterweight

5, 1=z 7]
Dve 1= -2 Drgx1les> ]
Dsl= &= 01
D&l=-2z U(E+E ~Z
5557 = Z (ol o het » w560 + 2l fi b Tw T 5ReE 2F)
Fuler - Counterweight | | |
el = EA@I-Tead)
DLl1= =4
$397=  Drewr D0 1077 - BEIG. D30t
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. APPENDIX. D

REDUCTION OF THE SIZE OF THE NUMERICAL- INTEGRATION PROBLEM

The size of the numerical-integration problem will be reduced by
using modes, constraint relations, or a combination of these methods.

The justification of the procedure is compllcated by the fact that:

9 Two basic elastic structures are 1nvolved the Iaboratory
and the Counterweight

© Free-free elastic modes are used together with nonlinear
physical rigid-body coordinates fof_eadh structure ‘

® Angular velocities are used and theSe quantiﬁies are not the.derivitives
of true coordinates
To facilitate the explanation; the procedure will first be. justified

for a simpler case and then will be extended to encompass the space-

station type of structure.

D1. Nonrotating Elastic Structure

Consider any nonrotating elastic structuré that is fiked to the
ground and is idealized by using iumped masses which may have rotatory
inertia. The equations of motion may be obtained by a variety of methods
(Newton's laws, Lagrange's eqﬁations, etc.) and typically have the

following form:

n unknowns

[-M:H;?.g*‘"':' 3#{ - S | (n équations,-) ()

where the dots indicate lower-derivative, possibly nonlinear, dynamic terms.

D1.1. The Lagrangian Form

Before proceeding, it is advantageous to reduce Equations (Dl) to
the Lagrangian form if they are not already in this form. This is
accomplished by first giving all coordinates {q} an arbitrary virtual
displacement {6q} and computing the virtual work W done by {f}. oW, in
general, has the follow1ng form: o ' ~

fs;mmw o w
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where [Q] is defined by Equation (D2); i.e., [Q] may be obtained by
calculating 8W and writing it in the form (D2). The generalized forces
associated with {8q} are therefore [Ql{f}. Multiplying Equation (D1)
by [Q] yields |

[M*:]T([/Z‘ { F... = E@:H#F (n equations,) (D3)

n unknowns

where

[(M™1= Colm] | (Dk)

Equations (D3) and (D1) are equivalent sets of equations of motion,

In the form (D3) the forces on the right are generalized forces, and
these equations are therefore identical to Lagrange's equations for

the system. Accordingly, the new mass matrix [M*] is a\ symmetric
matrix. If Equations (D1) were Lagrange's equations to begin with, then
[Q] would have turned out to be the identity matrix.

Dl.2, The Constraint Reduction Method
Next, suppose that some linear constraint relations are introduced;

for example, it may be desirable to evaluate the response with one
portion of the structure rigidized. Then a new set of variables {ql},
may be related to the old set of variables in terms of a constraint

matrix [T] as follows:

Dimensions:

igl=[rligf [ nn [

{ql} isr x1 (r <n)

[T disnzxr

The procedure will be restricted to the case where [T] is constant or a
function of time only. Substitution of Equation (D5) into Equation (D3)
yields

MICTTiE T ... = [913F P+ [o1#f (v6)

(n equations, r unknowns in fql})
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where {f} has been decomposed as follows. As & result of the con-
straints which have been imposed, forces of constraint have appeared;
for example, if a portign of a structure is to be rigidized, an ‘
imaginary rigid weightless mechanism could be attached in the idealiz=-
ation in order to hold that part of the structure rigidly. The forces
introduced by that mechanism are the forces of constraint. {r} nhas
been decomposed into these forces of constraint {f'} and the balance
of the forces {f 1. Equation (D6) now appears to contain less un-

knowns (r) than equations (n), however, the addltlonal n-r unknowns are
actually the forces of constraint appearlng in {f'}

In order to automatically eliminate the forces of constralnt
from the formulation, the virtual work of the constralned system is
~ computed by substituting Equation (D5) into Equation (D2) and decomposing
{f} into {fl} and {f'l}. The result is

sw=1s, TRl e dsp, FET TR0 7 ‘

{qu} is now the arbitrary virtual displacement whereas {6q} must satisfy

Equation (D5). In accordance with the theory used to derive Lagrange's

equations, the virtual work of the forces of constraint varnishes; i.e.,

féql}T [rF [Q]{fi} = 0. Since {6ql} is arbitrary, we have |
T 7/ N
[T1 Celif f=o0 E o)

From Equation (D7), it is clear that premultiplication of Equation (D6)

. by [T]T would have the desired effect of eliminating the forces of con-

straint from the formulation. The final result is

1 TM’]E’]yFm,. ] F@]i f (08)

(r equations, r unknowns)
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Equations (D8) are the new set of equations of motion that have been
reduced from n to r equations. Since W = {qu}T[T]T[Q]{fl}, the

generalized forces corresponding to {Bql} are [T]T[Q]{fl}; therefore
Equations (D8) are of the Lagrangisn form. o
While the above explanation was somewhat lengthy, the procedure
is straightforward and may be summarized as follows:
1. Compute the virtual work and write it in the form of
Equation (D2) to obtain [Q].
2., Premultiply the equations of motion by [Q] to obtain
Equations (D3), the Lagrangian form of Equations (D1).
3. Substitute the constraint equations of the form (D5)
into the equations of motion (D3) and premultiply by
[T]T, the transpose of the constraint matrix.

The result, Equation (D8), is the desired reduced set of equations of
motion, B

D.1.3. The Modal Reduction. Method
Suppose that it is desired to approximate the solution by using

a reduced number of modes of some related eigenvalue problem. Then,

instead of Equation (D5), the following similar equation holds:
5; f = Lelisf | (09)

where [¢] now takes on the role of [T] and {E} takes on the role of {ql}.
In fact, the entire theory of the previous section is applicable.
Substitution of Equation (D9) into the equations of motion (D3) would
give rise to forces of constraint. These are forces which must be present
to suppress the appearance of any mode shapes that are not included in
[#] and therefore to constrain all solutions to be of the form (p9).
After substitution of Equation (D9) into the Lagrangian form of the
Equations of motion, Equation (D3), the resulting set of equations is
reduced in number by premultiplication by the rectangular matrix [¢]T.
The logic for this premultiplication is that it eliminates the above-
mentioned forces of constraint. Note that reduction of the equations of
motion by premultiplication using any rectangular matrix other than [¢jr
would usually provide a different solution since the reduction process

cannot be reversed to obtain the original set of equations.
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It is emphasized that Equation (D1) must first be premultiplied by
[Q] to obtain the Lagrangian form, otherwise the forces of constraint
will not be properly eliminated from the equation and inaccuracies

[ ]TD’I*]E¢]§§? .. .= [(D]TEP_HJC, ? (D10)

The modal~ and constraint-reduction proceduresfhave;even a stronger
relation than that indicated above. The mode shapes may be computed so
that they satisfy certain constraints; for example, elaétic motion in a
particular direction may have been set to zero in compﬁting the mode

shapes. The the solution {§} to the numerical integration problem
Equation (D10), yields a solution of {q} which will also satisfy these con-

straints since {qlis obtained by substituting {E} into Equation (D9).

lThe next stép in the solution is to solve Equation (D10) for {é} and
numerically integrate. This solution is particularly simple to carr& out
if the modes are orthogonal with respect to [M*].

Converting the initial conditions to modal coordinates requires

special attentiqn.'From Equation (D9), at t = O
ARG RN o)
, at t =0

" Since [¢] is rectangular, the above equations can not be inverted; how-
ever an inverse in a limited (best fit) sense will be obtained. The
procedure is first illustrated and will then be proved. The equation

for {q} is premultipled by (o1 Iv* ) yielding

[oT D™ 1o Ti5 7 = Cp T 0" 1z 7

(at t = 0)

The coefficient matrix for {€} is square and may now be‘inverted; therefore

I5F= (e Tt 1)) o1l 22

(at t = 0)
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Similarly

5 1= (LpT T I0e]) 0T I Bi 7 (on3)

(at t = 0)

The proof of this procedure is as follows. Given any equation of the

form fq} = [¢]{§}, where f{q} is given, different values of {£} may be
selected in an attempt to approximate {q}. The error vector is then defined

as

§3Z?;§}J"E¢]§§f (D14)
A scalar measure of the error is

E=ie? M )ie? (D15)

where the symmetric weighting matrix [M*¥] has been used since we wish

to give more weight to errors in the coordinates associated with heavy
masses then light masses. Note that Equation (D15) has the same form

as twice the kinitic energy function with the coordinate errors replacing .
the velocites. Substituting Equation (D14) into Equation (D15) yields

E=(3g¢-CoTisf) [n™1(5p1-LoTis)

To determine the {€} which minimizes the error E, set the partial of E

with respect to each component of {£} to zero. Since [M*] is symmetric,

Saé:} =0 =-afg; ?TDP]TEM']({ZJ‘ [oliz?)

L=/ 5 - .
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where {e }=lo...010 ..O]T w1th the 1 in the ith pos1t10n Since

the abcve equation is true for each i,

| E¢TEM*J(§;?~E¢3{§?> =0

Lo T Ile 095 = eI M3 7

Solving.for {e} yields
51 = (CoT DM 106 Tp T M58 (016)

This is the value of {g} which will minimize the error (D14) as

measured by Equation (D15)%; i.e., the value of {£} which produces

the best-fit of [¢]{e} to {q}. However, Equation (D16) is identical

to Equation (D12); thus the procedure described to obtain Equation

(D12) does produce the best-fit solution. Similarly, Equation (D13)

yields the best-fit solution for {4}.

_ * A procedure analogous to that described above provides further
justification for the steps leading to Equation (D10). In addition to
eliminating the forces of constralnt it is now evident that these steps lead
to a best-fit solution of [¢] {5} to {q}.

¥ By direct computation azE/agi > 0; therefore the value of {€} which

was obtained does not maximize E.
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D2. Rotating Space Station
_ The previous procedure will now be extended for the case of the

rotatihg space station. The equations of motion were developed using
X Y
angular velocities ({w” } and {0'} ) instead of Fuler-angle rates because

the use of angular velocities led to a simpler formulation. The velocity

vector is
R Rigid-body motion of Laboratory
wX | ____(6 coordinates)
; elastic motion of Labor?tory
. : : (6 n coordinates
X} = Jommmm| mmmmmmmiommommommmm et (p17)
AR ‘
o rigid-body motion of Counterweight
wl| T (6 coorainates) __________
-
? elastic motion of Counterweight

/ (6 n coordinates)

where {q} and {3} contain both elastic displacements and rotations (see
Equation 4.105). Since the angular velocities are not the derivatives

of physical quantities, it is pointless to speek about the integral {x}

of Equation (D17). To circumvent this difficulty, the virtual displace-
ments (5ﬂX) and (GnY) are introduced. These vectors contain the differen-
tial variational rotations about each of the X and Y axes, respectively.
They may be constrasted with variations in Euler angles which are differ-
ential rotations about intermediate axes. By analogy to Equation (R6),

[GWX} and {GWY]-are related to the variation in the Euler angles as follows:

(e} = [s(x)] (o¥) |
(o'} = [s(m)){sn} + [m(M)] [S(¥)] (¥}

Since the non-differential quantities {"X} and {WY} have no physical meaning,

(p18)

they are not true coordinates and are called Quasi Coordinates.* We may

now write:

* Whittaker, E. T., "A Treatise on the Analytical Dynamics of Particles
and Rigid Bodies, "Fourth Edition, Cembridge University Press, 1937
(reprinted 1964), pp. L41-LY4,
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{6x} ‘=_ ) % . (p19)

Since there are n + o masses and 12 + 6 (n + n) coordinates
in both {éx} and {%}, 12 coordinates are dependent, and an appropriate

dependency relatlonshlp among the coordlnates will be 1ntroduced below

These 12 addltlonal coordlnates determlne the motlon of the X and Y

axes, and the dependency relationships which will be introduced actually

set the motion of these axes.

When the elastic free-free modes for both the Laboratory and

Counterweight are used to represent the flexible motion of the respective

bodies we may write

o7 Calist, {£7- 8157 (320

Since the six rigideody modes of the Laboratory have been eliminated
from [3], if all elastic modes are used, {€} would contain 6 fewer
coordinates than {q}. Under the same Qircumstances, {é} would also
contain 6 fewer coordinates than fa}. As discussed in Appendix E,
elimination of the rigid-body modes locates the mean or "rigid-body"

axes (the X and Y axes in Figure 4,1) relative to the>deformed Laboratory

and Counterweight. If fewer than the total number of elastic modes are
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" used, €} and/or {E} would contain even less coordinates. Equations (D20)
are the aformentioned dependency relations among the coordinates in {5x}.

Using Equations (D20), the following relations may be written:

fox 7= Deliegd §271=Celis t (ve1)

where X , \

(R R
STTX w’
5 ¥ : ¥ |

= < _ . = 4 - (p22)
51T'Y Cf)Y
> b=y 11 struct
5§ | ¥ are flexible |

and [¢] is the appropriate constraint matrix that relates the coordinates
{6x} to the reduced coordinates { GET}. When the modes given by Equation
(D20) are used to represent the Laboratory and Counterweight and when the

Connecting Structure is flexible, [#] has the following value:

(41 - [ﬂgé] | (023)

[5] all structures
- ~ are flexible

where [16] is the 6 x 6 identity matrix Equations (D21) now have the
effect of substituting modal coordinates for the elastic motion while
duplicating the rigid-body coordinates. Unlike the coordinates of {8x},
the coordinates of { 6§T} are linearly independent; thus {G_ET} can be an

arbitrary virtual displacement.



As previously, the virtual work done by the forces {f} may be

written in the form

sw =523 [QT§5} (en)

Substitution of the first of Equations (D21) into Equation (D2k)
yields ‘

sw#{sziTLMT{f,z r {55 3 [8] T[a’]fs,’} (D2ka)

where, as in the pfevious section, {f} has been decomposed into constraint
forces {fi} and nonconstraint forces ffl}. Since {6€} is arbitrary we

may proceed as préviously and obtain

E_?ﬂ" Colif =0 o © (pes)

© Also, for future reference we note that

Sw = §s5.7 [ol [olsh {

Therefore the generalized forces associated with {gT}'aré-
' T e p : . ' :
Hfen= Lol Lo lss, { | o (oe5a)

The second of Equations (D21) is substituted into the equations of

motion, Equations (4,101) and the result is

[A—,]W]{’?‘TF'-'M?*W,’FHG‘K " (D26)
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The forces of constraint are now eliminated by premultiplying by
[¢jr [Q] and applying Equation (D25). The result is the desired reduced

set of equations of motion.

[AR—JS('%-? =V ¢ (D27)

where the reduced mass matrix is

[aglz L[] ollalle] (028)

and the reduced right-side vector is

ivel= Lo Lo +i7F) (029)

The subscript 1 has been dropped from {f} for convenience in notation;
however it is clear that it is not necessary to include the forces of
constraint in the {f} of Equations (D29).

The above procedure could be used to handle a problem with a
combination of modes and conventional constraints. For example, the
Counterweight could be rigidized by shrinking [§] to zero in width
while the Laboratory is represented by its elastic modes [§] in
Equation (D23).

Since the forces appearing on the right side of Equations (D27)
(the elements of [¢]T [Ql{f}) are the generalized forces corresponding
to {iT}, Equations (D27) are the assoclated Lagrange equations in quasi
coordinates.* Accordingly, the reduced mass matrix [AR] is symmetric.

As in the previous section, it is.necessary to obtain a best-fit
solution for the initial conditions in modal coordinates. This is done
separately for the Laboratory and the Counterweight, and in each case,
the mass matrix that is used to obtain the modes is aléo used as the
weighting matrix in the error function, Equation (D15), These mass
matrices are denoted by [M] and [M], respectively, and are already in
the Lagrangian ([M*]) form.

The results for the Laboratory are

— e e e ww —
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7‘% Z= E“jpl [@]TE/VI]*E/QZ at t = O (D30)
157= [“4]_’[@ ]T[M]iff at t = 0  (031)

‘where [i] is the modal mass matrix which is diagonal since the modes
‘are required to be orthogonal with respect to [M]. Similarly, for the

counterweight,

{5} ==Y [8] M) Z{ att=5: (032)
it == ZT'TETTANET w0 (033)
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APPENDIX E
INITTAL ALIGNMENT OF RIGID-BODY AXES

El. LABORATORY

As described in Section 4.3.5, the elements of {q} and {4} must
satisfy Equations (4.117), (L.118), and their derivatives with respect
tot. However, at t = O, the user will be permitted to specify these
quantities relétive to any conﬁenient X coordinate syétem*; therefore,
the input values of {q} and {§} may noglsatisfy the above equations., It
will be demonstrated, by direct computation, that a neighboring set of
axes exist such that, when {q} and {§} are specified relative to these
a.xés the required equations will be satisfied. Equations (4.117) and
(4.118) therefore serve to locate the X axes (also known as mean axes

or rigid-body axes) relative to the deformed structure.

We will denote the user-supplied input data with primes, and the
adjusted initial éonditions which satisfy the required equation will be
unprimed. In Figure El, the reference axes used in supplying the initial
conditions is denoted X The origin of the % a?es is located at {qo}
relative to X axes, and the orientation of the X axes is {0 } relative
to X. The flrst step will be to determine these unknown values. The
user -supplied input data is as follows:

t .

N ; '
Y locates the orientation of the X axes relative to the Z axes
!

{w } is the angular veloc1ty of the X axes relative to the Z

axes expressed in X f
{R } locates origin of the X' axes and is expressed in X'
{R } is expressed in X'

{q IR {8 } and their derivatives are expressed in

X‘ for 1 =1, .. ., n.

* The {q } and {6 } supplied by the user at t = O must however be small so
that llnearlty is not violated; thus, the X coordinate system selected by

the user will be near the mean axes defined in this appendix.



AXES USED FOR INPUT " { g } (ei)
DATA £

MEAN /')5'

NOTE: COMPONENTS OF { r } IN X’ AXES ARE EQUAL

TO COMPONENTS OF { n } IN X AXES

Fig. E1 Rigid-Body Axes at t = 0 for Laboratory
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The first step will be to locate the mean axes. From geometry,
using linearized relationships (e.g., [n(ed)] = [1] - [r(e)]),

Te:§- 5‘9‘{?*{65? 3 -1
tg:8= g triaf-rebat

R (E1)

n (E2)

]
-

[7(nl= (C1+ TP Neasl @)
fRE= (DI+Mo D3R -52.F (kn)

Equations (El) and (E2) are substituted into Equatlons (4.117) and
(h 118) and the resulting relations are Equations (A28) of Appendix C.
These equations are solved simultaneously for fq } and ¥9 } These values
locate the X, or mean, axes; thus we have demonstrated that Equatlons (k. 117)
and (4.118) do locate these axes.

Next the values of {q,} and {6,} are substituted into Equations (EL)
and (E2) and {e } and {ql} are determined for each value of i. Then

[n(y)] is computed using Equations (E3), and the value of Y may be extracted
from [n(vy)] by u51ng the definition of the w matrix which yields

sin ¥, = Ty (0 5 g 1< T

S ¥3 ='775_1_(3')/605b’z ; W3|<E (55)

S Y, = — 7za (X)/Cas ¥,
' oL £am

cos &, = 77-33(()/603 ¥z
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where ﬂij(Y) is the ijth element of [m(y)]. Finally, Equation (EL) is
used to obtain {R}. All position data is now known.

The procedure for converting the velocity data is nearly identical
to the above described data for displacements, except that the derivatives
of Equations (4.117), (4.118), (E1), (E2), and (E4) are used. In place
of the defivative of Equation (E3), it is simpler to use the following

relation which may be obtained fram Figure El:

s 7 = (01+07(a)iux1-14 1 (z6)

All of the equations required to convert the velocity data are presented
as Equations (AL2 - A4T) of Appendix C.

E2., COUNTERWEIGHT

The derivation for adjusting the input data is nearly identical to
that used for the Laboratory except for some differences due to geometry
which will be discussed below. The geometry for this case is shown in

Figure E2. The user supplied input data is as follows:

1

T locates the orientation of the Y' axes relative to the X' axes.
1

Y . : .
{w } is the angular velocity of the Y' axes relative to the Z

axes (shown in Figure El1) expressed in Y'.
{R'} is expressed in Y'

{ia'}, {éa'} and their derivatives are expressed in z'

From the. geometry of Figure E2,

je.{= 181 +35,% (=1, .., ) (&D)
$7at= Sfa 137 1-IN(1$8, T (a ’
7)) = (03+ 78 3)rg 2 (G1-[e ) o)
IR = U lig i+(01+ M@ DE TR o

1

1, ..., n)  (E8)

b
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{7} @) X \ ‘

NOTE: THE COMPONENTS OF I

FINTHE Y' AXES ARE EQUAL TO THE
COMPONENTS OF [T N THE ¥ AXES ‘

XES

Fig. E2 Rigid-Body Axes at t = 0 for Counterweight
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Equations identical to Equations (L4.117) and (4.118) are also used;
however, a bar is placed over each symbol to denote that the application
is for the Counterweight. The balance of the computation procedure is
identical to that used for the Laboratory, and the results are Equations
(A35-Ak1) of Appendix C. |

The derivation for the velocities is also analagous to that uged
for the Laboratory; however, in place of Equation (E6), the following
relation is used:

qu: (5:1*[5(5,)])7‘@"'?—{5:? (E11)

The Equafions needed to adjust the counterweight-velocity input data are
presented as Equations (A48 - A5L) of Appendix C.
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APPENDIX F

PHYSICAL PROPERTIES OF SPACE STATION MODEL

USED TO DEMONSTRATE THE COMPUTER PROGRAMS '

The assembled Space Station is shown in Figure 6.1.  Figure 6.2

is a detailed view of the Laboratory.

F1. LABORATORY AND COUNTERWEIGHT

In the demonstration problems the Iaboratory and Counterweight are

made up of the following types of structures:

® core module ¢ A
® gappended module (also referred to as appendage)

® solar panel

The physical properties of the above structures were supplied to Grumman
by NASA. The core and appended module properties are based on North
American Aviation studies and the solar panel properties are based on a

study conducted by Fairchild Industries and Wolf Research andeevelopment

*
Corporation.

A typical core and an appended module are shown in Figures Fl and F2,
These modules were idealized as beams with the stiffness proPerties listed

in Table F1. The mass properties are shown in Table F2.

A typical solar panel is shown in Figure F3. The mass at each node is
listed in Table F3. The rotatory inertia at each splar-panel node was
assumed to be zero. The solar-panel elastic properties are déscribed in
terms of their normal modes of vibration. These modes were computed in the
previously referenced investigation® and were used as input data in the
Phase I computer program. The following 12 solar-panel modes were used
because these modes ﬁere determined to have the most significant participa-
tions in tﬁe Space-Sﬁation dynamics problem* These are modeé i, 2, 3, 9,
10, 11, 17, 18, 19, 20, 28, and 32. They are presented in Table Fk.

' Damping in the Laboratory was assumed to be 2% of critiéal for each

mode of the assembled Laboratory.

* Heindrichs, J.A, and Fee, J.J., "Integrated Dynamic Analysis Simulation
of Space Stations with Controllable Solar Arrays (Supplemental Data and
Anelyses), NASA CR-1121L45, September 1972. '



POWER BOOM
(RIGID AXIALLY)

Fig. F1 Typical Core Module
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144N,

.

~ "LOCATION OF MASS NODES (m)

NODE

X

Yi

z.
1

N O AW N -

21.87
18.82
16.77

1273
11.20

5.60

O 0 O 0 o oo

O oO0Oo0Cooo o




LOCATION OF NODES {m) |
e NODE X; yi z;
CORE MODULE .
1 335 | o 0
2 6.40 (] 0
3 9.45 0 0
4 12.50 0 0

-NOTE: : :

1. FOR MODULES 2 AND 3 (THE APPENDED
MODULES), THE LOCAL z AXIS IS
DIRECTED ALONG THE ¥-X3 LABORATORY
AXIS. :

Fig. F2 Typical Appended Module



STIFFNESS PROPERTIES OF CORE AND

¥4

Table F1

APPENDED MODULES

AXTIAL
BENDING TORSION SHEAR EXTENSION
EI . GJ AE
STRUCTURE | (W.n°) (N.u°) (M)
Core Module:
Main Section 2210 X 106 1062 X 106 32,2 X 107 133.0 X :Lo7
Power Boom 413 x 1° 231 x 16 20 X 107 rigid
Appended Module 7749 X 106 6199 X 1o6 136.1 X 107 340.3 X 107
Table F2
MASS PROPERTIES OF CORE AND APPENDED MODULES
MOMENT OF INERTIA
, (kgL.ma)
MODULE NODE MASS I I I
(kg) x y z
Core Module 1-4 2833 Lol 4561 4503
5 1530 921 1h4h42 1ho7
6 3059 1843 8919 | 8831
7 2889 921 14h2 1ho7
Appended Module 1-k 2833 5643 5498 5439
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NOTES: - 57

y=-3.315

1. ALL DIMENSIONS ARE |
IN METERS.

2. 2=0AT ALL POINTS. - .

3. FOR MODULES 4 AND
5 (THE SOLAR PANELS), -
THE LOCALy AXISIS
DIRECTED ALONG THE
+X3 LABORATORY
AXIS.

CENTER LINE \ ‘24

OF CORE MODULE

Fig. F3 Typical Solar Panel

y;.—1.£§6

/

x|
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Table F3
MASS PROPERTIES OF SOLAR PANEL

Node ' Mass
(kg)
1-12 21.93
13-14 2k, b1
15-16 15.71
17-18 ' 150.8
19-20 | 14,40
21 14.83
22-23 137.9
ok ' 17.44
25 24,22

26 0
27-28 24,20
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The Counterweight shown in Figure 6.1 was assumed to be rigid. It's

properties are given below in the notation of Section 4,o0.
Vector fo cm: .
{r3<lo o 8.1281T m
mass:
ﬁl = 33,992.013 k:g‘

moment of inertia matrix::

1.950100

[1,1= 2649178 0c® kg

n | 1.750095 |

F.2 CONNECTING STRUCTURE

The Connecting Structure used for demonstfating the pfégram was the
telescopic beam described in Section 4.4.2.1. Its physical properties
are listed below. The notation of Appendix G is uséd '

M = 13,508.5 ke
My - 33,9909 ke

I - 4.36150 X 1° kgen?
I, - 1.9;;96'7 x 16° kgen?
3 _ 2.06698 X 1° kgen?
I - }1.71;963 X 10° kgenm®
a = 15.8562 m

b, - 8.12800 m

fomin = T7-62000m

AE - 13347 x 1P §

ET - 389.43% x 10° W

Ja - 311.662 X ;06 N.o©
Ya = .05

Yg - = 05

Vg = .05
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Except for the value of AE, the above data was based on a uniform aluminum
beam with a diameter of .609 m and a wall thickness of approximately

.0635 m. AE was reduced to lower the axial extension frequency in order to
reduce the computer time required for the numerical demonstrations. Because
of the end connections and joints between the telescopic sections, the '
equivalent AE of a realistic structure would actually be lower than that
computed for a uniform beam; thus the artificial lowering of this quantity
might be realistic.



APPENDIX G -

CONNECTiNG-STRUCTURE SUBROUTiNE COMPUTATION

PROCEDURE AND SUMMARY OF EQUATIONS

As discussed in Section L.L4.2, the theory for two types of
connecting structures has been develéped, the circular beam énd the

cable truss. The computation procedure and a summary of the equations
used is presented in this appendix.
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Gl. Circular Beam

The main program must supply six vectors to the Connecting-Structure subroutine, viz. (P-
{L 5, {83, {o*}, (8}, ana {@*}(See Nomenclature of Section 4.) The required input data are as follows-

b
l’o min
AR, EI, JG

YarVe¥p

mass of entire Laboratory

mass of entire Counterweight

transverse moment of inertia (average of yaw and pitch) of the

Laboratory

transverse moment of inertia (average of yaw and pitch) of the

Counterweight

axial moment of inertia (roll) of the Laboratory

axial moment of inertia (roll) of the Counterweight

distance from Laboratory mass center to beam attachment point

distance from Counterweight mess center to beam attachment point

minimum value of lo on which stiffness coefficients are based

axial, bending and torsional stiffness, respectively, of the beam
ratios of damping coefficients to critical da.mping for axial, bending,

and torsional beam modes, respectively

The computation procedure is outlined below. Step 1 should be done once; if there is no

deployment in the run, Steps 2 through 23 should be done once.

Step No. Operation Required Equations
1 Compute M, J Eqns 1
2 Compute EO and To Eq. 2
3 Compute Kl’ K2, K3, K. Eqns. 3
y (Step deleted)

5 Compute I Eq. 5 .
6 Campute M, , ¥, M3 Eans. 6
7 (Step deleted)
8 Compute A, B, C Egqns, 8
9 Compute wi, u)g Egns. 9
2 - -
10 If (}{1-!1):L Ml) = 0, set 5l=1, ¢1=0 and to to step 14
2 -
11 If (Km0 M,) = 0, set 51=o, #,=1 and go to step 14
12 Compute Rl Eq. 10
13 Compute 51, 61 Eqns. 11
s . .
14 If (Kl- 5 Ml) = 0, set 62=l, ¢2=0 and go to step 18
15 If U%"”S M,) = 0, set 32=o, 8,=1 and go to step 18
16 Compute R, Eq. 12
17 Compute 32,52 Eans. 13
18 Compute [MGJ Eq. 14
19 Compute [k,] Eg. 15
20 Compute [cG] Eq. 16
21 Campute €, Cp, Cy Eq. 17
22 Compute Cy Eq. 18
23 Compute CT Eq. 19
23a Compute P Eq. 4
* *
24 Compute {fE 1, {'rE } Eqns.20




G-3

Subsidiar uations for Beam Connecti Structufe
Y./
J . -
e ) Jo+ L

y e T . on\T2 ~ ) L ' ;l,"ﬁ
4 = (4 f 74 f) o, 4= ’/"‘7/"4 7((/«/2, /o,_vm;y>
K, = /aer/,?:‘? , K, = -sez/j;
Ko= AE/E v K= 6T/4

f o= [?’) d?) ’:]i;fi;'}
F o= L.+ L, v i (2 rbr )

My = Tz + L)/
Mz=ﬂ7(;§¢-’j} Grts D)/ E Y

s = (/7(.171_ (41l )™+ Lo 2™ )‘I‘Icl':_ )/f)

Equation Deleted

A’f-%%’%za" | |
8 = RIS My —Kty — ks, b |
C = /</ /(3 - /C&‘;\ ‘ Y,

W= (-8~ (g:-spc ) )/24

[(/:12— = ( -£L + é:@z'._y,f.c)yz' )/az-ﬂ

(1)

(2)

3)

()
(5)

(6).

(7)

(8)

(9)
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/él = - (/</ “‘42”7/)/(/(). "‘-‘)Iz”z"L )
£ AR >0, ser & =1, ¥, =1/ R,

LF [R, ]fé I, set S, = | 3 é@ = £y

W

'Y ;; K, 'Cz. $ GL K/i

\__.
7( \
H
i
1\

_%,, ;2. 'KZ- K3¢. -—97; 5?J - ©

(oM YE o

o lkealten )]
—.CI C’t_ — —_— -92 é 5
l :(: ;_—S,, /)' [__ _]LC&]
. Cs ‘Sa- %
S

L?@ ;1_; LC’ mzz._

.2

(10)

(11)

(12)

(13)

(1k)

(15)

(16)

(17)

(18)

(19)



K’l o K3 e (&)
o o K3 12,
o o L) I(-r /J[
o ‘C‘R o C; o «
o

14 © ©0 o ""Fo o
© o o o 5 o
S

ﬁz

¥

B 2+ |

o 12: 0 %% o 0
- . "“’L
Lo v o f£&o
¢ o o O o 6
S

(20a.)

(20b)
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G2. Cable Truss : |

The main program must supply the following previously used terms to
the Connecting-Structure Subroutine: {s}, {s}, [T(B)] {zo], {i’,o}, {2} {2}.

The required new input data is as follows:

NCAB : nmumber of cables :

{A}f }) } =1,2...NCAB position vector (expressed in )gi) which specifies
the Laboratory attachment point of the jth cable

{A“’: ;) j = 1,2...NCAB position vector (expressed in ng) which specifies
the Counterweight attachment point of the jth cable

(AE)*') &'= 1,2...NCAB spring constant per unit length of the jth cable

Xj-) 4: 1,2...NCAB viscous damping coefficient per unit length of the
jth cable '

The computation procedure is outlined below. Do Step 1 the first time through

only. If there is no deployment in the run, do Steps 2-5 the first time through

only.
_ Reqﬁired.
Step No. Operation Equation
1 set up [T(7,)] Eq. 1
2 Compute {,(j_oi) f=')"' NCAB Eq. 2
3 Compute {Ziof) 7, =/,... NCAB Eq. 3
4 Campute ,(l-o ) ;, =/,... NCAB Eq. 4
5 Compute ;1,}-0 ) /, = /) ... NCAB Eq. 5
6 Compute {{-; , ? -.:/),,,NCAB_ Eq. 6
7 Compute {Lii , ;, =1/,., NCAB Eq. 7
8 Compute ,4}- ) j' =1/, .., NCAB Eq. 8
9 Compute nj) }:I),,,NCAB Eq. 9
10 Compute ej) } =’1) ... NCAB Eq. 10
11 If e‘- < o, set e}. = e’.:. J;= / Eq. 11
otherwise, compute € " ++«NCAB
12 Compute {p,.g) . j:l)...NCAB Eq. 12
13 Campute {Ti}) | f =1/, ,,.NCAB Eq. 13
14 Compute £55*1 ) {3“:} Eq. 1k
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APPENDIX H

COMPUTATION PROCEDURE FOR CONTROL-SYSTEM SUBROUTINES

This appendix outlines the computation procedure used in the control-
system subroutines and the method of using these subroutines in the Phase II
(flexible-body) computer program. The hierarchy of the subroutines as used
in the Phase II program is indicated in Figure Hl. Subroutine CONTROL was
written to interface most of the control-system routines with the Phase II
program., It contains the additional computations required to generate the
input to the_control-éystem subroutines and to generate the outﬁut in the form
required by the Phase-II(program. CONTROL also reads the input data and writes
the output for the subroutines that it services, thus, this facilitates replac-
ing the controls subfoutines. Subroutine BMCON is a similar interface routine;'
however, it services oﬁly the balance-mass control routine BMCTR. MUCOM and
POSCOM utilize the service command routines, POSCOM and VELCOM, to command the

motion of moving rigid:masses and the fluid velocity, respectively.

In the flexible,vehigle idealization it is assumed that mass point is
contains a controls package which includes all sensor elements and the CMG
used to eliminéte wobble. The 16 jets are assumed to be located on mass
: poinﬁs 1 and 5 as shown in Figure 6.3. Each jet is assumed to have the same

thrust fJETu 1 and:fJET are read in by subroutine CONTROL.

The symbols used in the models of the control systems described in the
following sections are. defined in Table Hl.- The previouslyﬁused‘Phase IT
(flexible-body analysis) symbols used in-the interface programs are defined

in Section 4.0,
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Table Hl Definitions of Symbols Used in the.

Mode

Attitude ‘
and Spin Rate
Control

Attitude
Control

Attitude
Control.-

Attitude
Control

Spin Rate
Command

Spin Rate
Command

Spin Rate
Command
Spin Rate
Command

Spin Rate
Control

Spin Rate
Control

- Counter-

weight
Command
Counter-
weight
Command

 {acc

Models of the Command and Control

Symbol

time
time
JET

05!

OMAX

6 DB
1CU
wlCU

ﬂ?cwlc

¢

€v1 DB

Xp3cy

 *xB3cu

System Subroutines

. Definition .

error in spin rate,'wl -w

time increment of 1ntegrat10n in
main program ’

time gt which fun‘ends

force exerted by Jet (each jet is
the same)

magnitude of acceleration, used to
compute parabolic switching curves
in POSCIR (value for each of
three axes)

error rate'e s maximum magnitude,
used for straight-line switching

curves in Policy 1

error in §, dead band (same
value for each of 3 axes)

spin rate command update
time for spin rate command to be
updated

magnitude of spln acceleratlon
command

spin rate command

1c

error in spin rate, dead band

position of counterweight center
of mass relative to laboratory,
along axis 3, command update

time for updatlng ‘commanded posi-
tion of counterweight center of
mass relative to laboratory, along

~axis 3



Mode

Counter-
weight
Cammand

Counter-
weight
Command

Counter-
weight
Cgmmand

Elevator
Command

Elevator
Command

Elevator
Command

Elevator
Command

Elevator
Command

Mass
Balancing

Mass
Balancing

Mass
Balancing

Mass
Balancing

Mass
Balancing

Mass

=R KN L6 4

CMG
Control

Symbol

accB3C

velMBC
Xa3c

X13CU

X13CU

aCCl3C

velMlC
X13C

smvs !

™ EST

err

KEXSE

€$DB

a0023c

H4

Definition

magnitude of acceleration, counter-
weight, along axis 3

velocity, maximum megnitude, counter-
weight command

position of counterweight center
of mass relative to laboratory,
along axis 3, command

position of elevator cenfer of
mass relative to laboratory, along
axis 3, command update

time for updating commanded posi-
tion of elevator center of mass
relative to laboratory, along axis

3

magnitude of acceleration, elevator,
along axis 3

velocity, maximum megnitude, eleva-
tor command

position of elevator center of mass
relative to laboratory, along axis
3, command

position of accelerometer sensor
relative to laboratory (projections

along X, X, X3)

estimate of mass in mass 1

acelleration command - acceleration
sensed, XCMND - XSENS

3 3

constant multiplying error between
acceleration commanded and accelera-
tion sensed

error in mass 2 (balance mass)
velocity (actual minus commanded
velocity), dead band

magnitude of acceleration for mass
2 (balance mass)

gimbal angle, CMG, reference coor-
dinate is laboratory axis 3, positive
counterclockwise



Mode

CMG
Control

MG
Control
CMG
Control

CMG
Control
CMG
~Control

~ Symbol

ey

'’ mom

-~ CMG

"BGIM

H-§

Definition

constant, multiplies error er%

to give torque thGIM +'thASS

" in gimbal angle control (in gimbal

angle rate control, K, multiplies

err: to give err

ﬁ .

torque limit of torque motor

KT .

constant, multlplles B to glve
“YppeK:

momentum of the CMG.
inertia of CMG gimbal sbout the

vehicle spin axis, which 1s axis
of gimbal freedom
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Hl. COMMAND ROUTINE POSCOM (POSITION COMMAND)

This service routine is used by routines which command the positions

of the Counterweight, the elevator and other moving masses, except the

balance mass.

Inputs

time
poscu
timcu

a.chAG

velynx
Outguts

out

time0
timel
time?2

time3

accOl
accl2
acc23
poscO -
poscl
posce
velcl
velc2
accym

vel

pos

time

position command quate

time of position command update (commencement of update)
magnitude of non-zero acceleration

magnitude of maximum velocity

control: O update data not yet computed
1 update data computed

commencement of update, acceleration is applied
time acceleration is ended and coast is commenced
time coast is ended and deceleration is commeneed

time deceleration is ended and position command is
updated

acceleration from time0 to timel
acceleration from timel to time2
acceleration from time2 to time3
position command at timeO

position command at timel

position command at time2

velocity command at timel
velocity command at time?
acceleration command
velocity command

position command
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~ COMPUTATION PROCEDURE

S If twme = 0. > oul =0
-~ CMN

| = 00 o
ek =00

£ 0. > continue e
If  tme < timew > go o End : |
3 timeu > Cowhnue
It of < o > Codme
s . > ok ) .
— ( ' — oS |
crrov. —_.»‘_,Qoscu peo Cmn

t./l_ | :‘l \f_r'rov\ / accg'w

vel,,, T \j levwel acc

< vel _> cc-uh‘hue
¢ \)cp.m- < Ve Ay | @ -
> g > 9 b &)

VCQMAX E R
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timeo

= timey
timer = timeo ttlz.
‘\:Lvne?, = ‘l:\\mez_ A t'/z_

i / lerrer] ) acc
accor (C”"V lerrov)) TMAG
qQcCCq2 = 0.

= orl)acc
acces (~ ervor /| errovl) MAG
Out - |,
go to O

= ¢ / acc
{-1 ve MAX MAG

- N/ e
{:'7_ tc\‘TOY\ v QMAX
timeo = timcu
4:‘\1\6.\_ = LimCO + tt
Limez = timeo + t,

_— | cc
accol (ervor/ lexrcl) ACC
qCC'L?’ —_ O,
acez23 = (*crro\r/\c\rmﬂ) AcC,, 4o

out < 1.



B
go fo bud

£ 0. > coutinue
e cowbihue

v
/ 2.
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() If time < tims > Coutinue

N

S Hwmel > go to @ :
TE +ime < timez > o fo @

N

S timez —>  cowhinue

L€ acc  =acczz > go b @
M |

If oacc = accor > Go P ©

MmN

—

pe SCMN = posci + VceCi ('ﬂmez - 'f:ime'i)
9o +o @ | ‘
@ vel = Gccol (4—(‘%1 - timeo)

CMN

POSCMN = POSCo 4-(!/2.) accot (‘tl‘\mﬁi-""tiMCO)z_

- + . \ _ .
POS ¢ pn PO pun, VelCMN (timez ,.tn\mcl)
6 ' =
O velc2 VtQCMN
0SC2 = <
P | 0% n
acc = 6CC23
CMN | . |
@) vl o " vellca +accz3 (Lime- timez)
posc' = poscz +velc2(time - time2)
MN S
+ ()accts (fime - time2)
e b Eud

@ T bLime < timel > Go to @

> bmel —> Conlinue
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MmN | -
;‘?" a i —> Ccmhuue

acc = aciz > go h @ .

vel = QQCO'\. Lt\wel ——-‘E\meo)
My

0s = pcsco + ('/Z)GCCM(Hmei -tlmeo)
F CMN . | |
velc1 = _Uﬁec'W

posci = VOSCMM

QCCCMN = activ
Ve = vedea

?OSCMN = POSCi + thc1(£\me ‘anei)

@ o bwe < Jcmco Sk @
L E | Limeo —> Cowkinu€ |
T acc _.accoi — ) o O
| [N
. .o accot —> . COM'WE?:AV-‘_
acC S dccci :
CMN :
posco = PO 4 |
| Vtk o= OvCCO/l(_t\hne_ -i:nmeD)
TV |
0»4; = posco +(|/7_)Qcc0'1 (tume~t\mw)
POy ,
{ﬂ Eml
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H2 COMMAND ROUTINE VELCOM (VELOCITY COMMAND)

This service routine is used by subroutines whiqh command the spin

rate and the fluid velocity.

Input to Subroutine

time
velcu
timeu

out

timeQ

timel

accOl
velco

achAG

time
velocity command update
time of velocity command update (commencement of update)

control: O update data not yet computed
1 update data computed

time at which update is commenced; acceleration is
applied,

time at which update process is complete; acceleration
is removed

acceleration from time0 to time]
velocity command at timeO

magnitude of non-zero acceleration command

Output of Subroutine

acc

acceleration command

CMN
velCMN velocity command
Computation Procedure
I§ bime ~o. > oo, <o
| out = o0,
# o. > ontinue

Lt

==
-

bme < timey — ge b Eund
S timeu = coutinue
out < 0. > coutinue
> 0. > gt O N
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error = Velcu - vel

. L _ MmN

t = | i acc .

g evvor| / A
+imeo = timcu

_‘l:i,\mei = ‘b‘w\:};o o+ 1:1,
~accot | f. (crr??r/lerrbr!) achG o
out = l.
O 1f time < ‘Lume‘l —> coutivue
| > ‘Etlne‘l —> 9 b @
T_f tume « timeo —> g fo 'EMI'&
> {:meo L —> Cou‘h"“e v':

I‘f- aCC,- = aqecoa 2 J° o @
S cmN -
# acco1 e wad"wwe

velco  :  A‘ vc‘Q '

| | cHN
acc = qcco1
. chn o
| @ vel = veleo + QCCO‘[ ({mw- J(:nme;o)
c.nm | o
to - Ewl -

@ 14 o =0. > & ﬁ-E.\JL

,‘M‘"‘ + 0. ,f—> Coutinue

vel S Vclw i—acem (tnme‘l —hmeo) |
Chn | |
e o= 0.
ACC M



H.3 COMMAND ROUTINE CWCMND (COUNTERWEIGHT COMMAND )

This subroutine is used to command the position of the Counterweight.

Input Data Read in by Subroutine CONTROL (Phase II Symbols Used)

£O3U’ tﬂO3U, 8CC 402 ag? vel)@03 max’ initial value of 103 (which is

is 3rd component of {ﬂo})

These symbols are defined below.

Input to Subroutine CWCMND
Symbol

Phase II Control

Analysis Analysis

t time time

) position of counterweight relative to
03V XB3CU lab along axis 3, command update

t t time for updating commanded position of
203U XB3CU counterweight relative to lab along

axis 3
ace acc magnitude of acceleration, counterweight,
#03uag B3C along lab axis 3
velﬁOE VelMBC magnitude of maximum commanded velocity

of counterweight relative to lab

Output of Subroutine CWCMND

Symbol

Phase II . Control

Analysis Analysis

4 iB acceleration of counterweight along lab

03 3C .
axis 3, command

£03 XB3C velocity of counterweight along lab axis
command .

203 XB3C position of counterweight along lab axis

camand

3,

35
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Computation Procedure (control analysis symbols used)

Call Subroutine POSCOM

(Arguments: |
time, XB3CU’_#}CBBCU,
4°utXB’ time QB_’ time lB’ time QB, tixm 3B’
achlB, accleB,'acc23B,
poScOB,'pogclB,'posc?B,
'vel‘ClB, ve;CEB-,
8cCp3 MBC?

g 59330’ ¥B3c) |

o’ vel
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H4. COMMAND ROUTINE ELCOM (ELEVATOR COMMAND )*

This subroutine is used to command the pbsition of the elevator.
It is used only with the rigid-body control-systems development program.
Subroutine MUCOM performs this task in the Phase II program.

Inputs to Subroutine

time time

X13CU position of elevator c.m. relative to lab along
axis 3, command update

tXl3CU time for updating commanded position of elevator
c.m, relative to lab along axis 3

a.ccl3C magnitude of acceleration, elevator, along lab
axis 3 ' .

velMlC ’ velocity, maximum magnitude, elevator, command

Output of Subroutine

il3c acceleration of elevator along lab axis 3, command
k13c ~ velocity of elevator along lab axis 3, command
Xl3C position of elevator along lab axis 3, command

Computation Procedure

Call Subroutine POSCOM

(Arguments:

time, X13C‘U’ t)CLBCU’

out time Ol, time 1., time 21, time 3

Xl’ 1 l’

accOll, acclEl, acc23l,

posCOl, posCll, poscel,

velCll, velCQl,

2eC13¢> Vehneo

N3cr K300 Y30y

* Control-system analysis symbols are used (see Table H1)
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H5 COMMAND ROUTINE MUCOM (COMMANDS POSITIONS OF»MoviNGdMASSEs) *

This subroutlne is used in the Phase II program to command the position
of each moving r1g1d mass on the Laboratory, except the balance mass, The |
motion of the balance mass is controlled by the balance mass»control sub-
routine BMCTR. | - o

For each mass uj controlled by MUCOM,ledch axis of the position vector
{U‘} may be controlled independently. Ideal control is assumed i. e¢, the
commanded and controlled positions are assumed to be 1dentical.,

Input Data Read in by Subroutine MUCOM

i axis along which motion occurs

{Uj} 1n1t1a1 value

For the ith component.or {U;} specify the following:

Uy update value of position ¢oordinate
tU time of update

accsmag magnltude of acceleratlon‘, e
’velmax' magnitude of maximum veloecity =~

Input to Subroutine -
t ~ time
i moving mass (uj) subscript

Output of Subroutine -

{Uﬁ} position;of ujfz axes
(0} "
(v}

Comgutatlon Procedure

If no motion of pJ is specified, keep'{Uj} constant. If ‘motion is
specified, call Subroutlne POSCOM to obtain motion {U (t)} for each axis
i along which motlon occurs. All POSCOM arguments (except t) must be
stored as a functlon of the mass index J and the axis i.

* The Phase II symbols are used (See Sectlon 4.0)
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Hb. COMMAND ROUTINE SPNCOM (SPIN COMMAND) T

.This subroutine commands the spin rate of the Space Station. In the
version of SPNCOM used for the rigid-body control-system development program
the spin acceleration command was set equal to the system's capability
(i.e., equal to the jet torqus divided by the spin inertia). In the version
of SPNCOM used with the Phase II program, the acceleration command was not
computed; instead it was input data.

Input Dats Read in by CONTROL in Phase II Version of Subroutine

initial value of wlC’

Tyrow? #Cyc

et
These symbols are defined below

Input to Subroutine SPNCOM

Inputs
time time
W oy spin rate command
twlCU time for spin rate command to be updated
accwiC magnitude of non-zero spin acceleration command
fJET force exerted by jet (each jet is the same)
{XAj} locations of points Aj in X axesl
;4] moment of inertia matrix for vehicle (lab +

counterweight + 2 masses in lab)*

Output of Subroutine SPNCOM

spin acceleration command *

“1c
Wy o spin rate command
W CMAG magnitude of spin rate command

Camputation Procedure

A, TR N
acc o Zﬁn (X *(3,13)- X J(3,\0))_/ M“ (L, @

* Not used in Phase II version of subroutine.

*% Bquation deleted from Phase II version of subroutine,
t Control-system analysis symbols are used. See Table HL.
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Call Subroutine VELCOM A - (2)
(ﬁrgum'en?d_l

N - _ (%) . . )

t‘“_".(_’»; “tcu ) wicy 7

()utws? t\meow) E;inleffl‘-‘\".).:

accor  _ veleo y Gécoi ,
W w ) C
':_'_._lc,"“'.)‘ K XS ) :

)

(3)
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H7. COMMAND ROUTINE PMCPCOM (PUMP COMMAND)

This subroutine is used in the Phase II program to command the velocity
of the fluid in the pipe line. PMPCOM calls subroutine VELCOM to perform
this task.

Input Data Read in by Subroutine PMPCOM

v velocity of fluid in pipe (initial value read in)
Vy update velocity of fluid in pipe
th time of velocity update
R . >
acCoync magnitude of acceleration (must be > 0

Input to Subroutine
t time
Output of Subroutine

' acceleration of fluid in pipe

v velocity of fluid in pipe

Computation Procedure

Call Subroutine VELCOM
Arguments:

t, Vips th, out, time 0, time 1, acc 01, velCO, 8CCo a2
v, V
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8. CONTROL ROUTINE POSCTR (Position Comtrol)

This service routine .is used by the subroutine which contszls‘ the

attitude of the nonrotating Space Station.

Input to Subroutine

e . error, attitude - attitude command, one axis
epp. - error dead band

e - . error rate, rate - rate command

ém’ error rate maximum (for switching)

aceg. . non-gzero acceleration magnitude (for $w1tChing)

Ou'_tput of ,Subroﬁt ine

acepo acceleration now b(+1-.,A 0., -1.)
Computa.tiori Procedure
| A e‘: = i, :

‘ N s 0. > céwﬁvwlé o

- Cowntinue:

9 1 o e

< Cpe
-

3 = \J'Z accg (e t CDB').

e —> Continue
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(ouﬂnqe

__>
>
eDB — Q0 to @
e, —\/ -2 acc_ (€-¢y,)
I e<e, > 9o 00O
Se, > % h @
acc = €
NEW - 1
‘90 +0 E.V\A
Gee = O
NOW
P+ End
acc = -€
Now 1
30 ‘|‘° E\w‘
e = - e
e = -¢
e = —l
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Ho. CONTROL ROUTINE VELCTR (VELQCITY CQNTROL)

This service routlne is used by subroutines which control the spin

rate and (in the rigid-body control-system development program only) the
p031t10n of the balance mass, '

Input to Subroutlne

e - error rate (rate - rate command )

°DB
Output of Subroutine’

error rate dead band

aécNow fa¢¢eleration now (+l., 0., or =1,)

Computation Proéedure

f e<e, = gk O

s 3> Coutinue
~ Sps |
@ acc = -l
Now
30. “’o Ehol
® If e < ébs —> Continve

>e, > 9 h0O
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v Ewnd
(4
3 é < O' —> 90 fU. @
® 1 & AT W‘W@
- _ > 9o b '
If ACC i l | »
= o‘
Al yow .
Ewd |
o W W L o e b @
Tf C\chow
= 0.
qc'cmow
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HLO CONTROL ROUTINE ATTCTIR (ATTITUDE'CONTROL)'

This subroutine is used to control fhe attitude of the'nonrotating
Space Station. In.order to include the flexible: body effeots, il.e.,
the vibration of the sensor and the jets, the required equations (presented
below) have been 1ncluded in interface subroutine CONTROL.' CONTROL als0
is used to read the follow1ng input data for ATTCTR. The terﬁs are defined
in the table descrlblng the input to ATTCTR which appears on & subsequent

page. _
Input Data Read in by Subroutine CONTROL

| eoos 'y eemu ) XJ1
where XJ1 is the jet momentum (see Flgure 6.3) and the other symbols
are defined in the table of subroutlne 1nput wh1ch appears ‘on a subsequent

page.

Computation Procedure for Subroutlne CONTROL to Interface ‘Phase II

Slmulatlon w1th Subroutine ATTCTR *

1. Compute sensor attitude expressed in‘the Z axes {6 } and attitude
rate for nonrotatlng state assuming linear deformatlons. is is

index number of mass point containg sensor.

Z Y.} = ¢ U} + ffﬂ;{?

R

2. Compute control forces and torques (on mass points 1 and 5).

i

§$¥: + {6, }
4 .

ol I§?+§‘_" | W ,
$£'1 - $hes 1 b b S5 495, -f/‘-;g:
.” o
E °. .
N e (-f,-1, -4, +5, f:fdr "5

* The Phase II analysis symbols ere used.
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f + 5

8 12
(5 Y= 35 4%, 5 45, 15 + 4
0
( | )
o
$3.72 = o

LXJl (" ‘%— - fé ~§7 f{f"f fio +£/)J

where fj is the thrust of jet number j in Figure 6.3. TIts value
is determined in ATTCTR or SPNCTR (see Appendix HlO), It is given

the value zero when turned off or + fJ when on depending on its

ET
direction in the figure.

Compute {XAj}, the vector to the jth jet in the control analysis

notation. If r, is the kth component of [ri}, {XAj} is given by
b
the following table: '
x4}
- Component 1 . Component 2 Component 3
| 1-h -XJ1 0 r ”3
M
5-8 -XJ1 0 r_ -
55 3
9-12 XJ1 0 T
5, 3.
13-16 XJ1 0 r
la' 3
4. Compute the moment of inertia [IJ of the entire undeformed Space

Station about its center of mass. This is done by evaluating
the following equations in succession. The Phase II notation is

used; in particular, the quantities computed in Equations (A29)

and (A3) of Appendix C are used. D_,, and D... are the ij components

Lij Cij
of [DL] and [DC], respectively.




”~
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DL'3Z - DC32
‘ ' : -~ i ~
lDL 13 ) £ r; Z = ?:; Pe i3
D | D,
L2 Cc 2y

(hod soe (MUI0S + 1 LT7)](6R 4 4T.4))

s

LT LTI +IT I+ M, (Lren)1*- [ re, -

res)1?)

#u, (Lra7?- Lr(iR, 8 + fF—;"} ~ [Tr(_%n{g.s})]z)

A1l of the requlred input for Subroutlne ATTCTR is now avallable.

Input to Subroutine ATTCTR

Symbol v
Phase IT ‘Control
Analysis =~ Analysis
vy 3 fe}

S .
-€oDB
“oMAX
)
_[I] "[MilJ'
"ijT
vwiCMAG

Euler angles of gsensor

error in g, dead band

error rate, - ei,max1mum magnitude (used for switching
clurves)

locatlons of p01nts AJ 1n X axes

moment of 1nert1a matrix for. vehlcle (lab + counter-
weight + 2 masses in lab) '

force exerted by jet (each Jet is the same)

magnltude of spin rate command

Output of Subroutlne ATTCTR

{fAJ}

forces exerted at points Aq in lab (due to Jets) ’
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Computation Procedure in ATTCTR

Control analysis symbols are used.
SRCTIL SIS
(57 = [o o o' fer all points A
QCCQSU) = %ET (XM(3,'3) - xm(slooﬂ/: M_"(I,l)
acC,(2) = @AET(X“‘(s,q) ~ )(“"(3,.2)\/M“(z,2)
qcces(“s) = -QJE_‘ ()(AJ(quS) - )("J(l)l)')/‘ﬂ" (5,'3)
{eg} =€}
AR
Coll  Subreukine POSCTR

e (j), ¢ SR

'eemnx ) QC;CQS(i))C\CCe_Lf) )
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Axis 10 N
s “CC(” <e. = £ 020 7 s

$he, = hﬂe.

= 0. *“'). (jc 4¢  hert _CU_US
>0, - ‘gt\j (2, 13) = ‘{JET
»‘ L (Z,\O): §

AED
= -‘ o
..___.I_:_.(: | qcce(,l) 0. = {:A, (\ ) = {‘E
| Gﬂ (\ §) = £ -
-=O" '> 80 o M‘xt Gxd
' ‘”%’“‘ (%) -

.E
.- : .{»A_J (|"2): __,_chT

P
e . §_AJ (.7_ §) = 4

=0, > g ot Bvd |

o > AN (28) T Ner

o ‘P\‘ (21) = %

End
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H11 CONTROL ROUTINE SPNCTR (Spin Control)

This subroutine is used to contrgl the spin speed of the Space Station.
The spin speed of the sensor mass ﬁ@és} is computed in the main program
along with the angular velocity of every other mass point. (See Equation (4)
of Appendix C). Based on the actual and commanded spin speeds, subroutine
SPNCTR computes the jet thrusts. The resulting jet loads on the Space Station
{fé}, {Té}, {fg}, and {Tg} are computed in Subroutine CONTROL using the
equations listed in Appendix HO,

Input Data Read in by Subroutine CONTROL

€w1DB (defined below)

Input to Subroutine SPNCTR (1)

wyg spin rate command (lab axis 1)
2
{w} angular velocity vector of lab (2)
ewlDB error in spin rate, dead band
f oop  thrust of each jet (each jet is the same)
W1 OMAG magnitude of spin rate command
. (1)
Output of Subroutine
ewl error, spin rate - spin rate command (3)
{fAj} forces exerted at points AY in lab (due to jets)
: (1)
Computation Procedure
If w = 0. ) jé + EhA
1CMAG #F 0. continue
. = \ — Y
wi 0y “1c
Call Subroutine VELCTR
. . acc )
C orjumentp (‘ici ) C‘wle ) ND1

(1) Control analysis symbols are used.
i

X . s .
(2) {w" ®} is input in the flexible body analysis

\ A~ - = . . .
3) Output only in control analysis version of subroutine
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I 'achéi < -O',’ > (’ L (m) {ur
| | N (2,9) ==k
Gh" (2,2') _:
N (2,5) =
Z0. > LR (20a) '=;.--7ﬁs_ |
% (2 ,19) "‘~
{A (2 ,3) = %{uﬁ
F4(2,1)~ ¢

i
o

N ET
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H12 CONTROL ROUTINE WBLCTR (Wobble Control)

This subroutine is used to control wobble in the rotating Space
Station. It is assumed that the CMG 1s located on mass number is’ the
same mass which contains the sensor package. The output of the subroutine
is the torque on this mass. Intermediate terms required to interface the
Phase II program with subroutine WBLCTR are computed in subroutine CONTROL.
The procedure for computing (1] has already been documented in Appendix HO.
CONTROL also reads the following data used in WBLCTR. The terms are defined
in the table describing the input to WBLCTR which appears on a subsequent

page.
Input Data Read in by Subroutine CONTROL

EG and BG at t = 0, K%, thIM’ Kg s oM 45 IBGIM

Additional Integration Required in Main Program

BG, EG, eIT s and err__ are parameters generated in WBLCTR that require

LL
integration. This integration is performed in the Phase II .program together
with all other quantities that are integrated., The initial conditions for
éG and BG are input data whereas the initial conditions for err ., and err

KT LL
are established in WBLCTR.

Coggutation Procedure for Subroutine CONTROIL to Interface Phase II
Simulation with WBLCTR
Compute angular acceleration of sensor mass.

(%) =([2}-Ir(e, YD + (81 ) - [r(d; )™
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Input to Subroutine WBLCTR

Symbol

Phase II
Analysis

{w

[

i
X's
}

I

Pg

&

Control
Analysis
fw)

M,]

B

'thIMvv
K .

.err

err

errLL.

err_
LLI

@)
time

mom

BETM

Y1omag

" error err

_ integral of err

angular velocity of sensor projected'onto X axes

moment of inertia for vehicle (lab + counterweight + 2
masses in lab)

gimbal angle, CMG, reference axis iSjlab axis 3, positive
counterclockwise S

- gimbal angle rate, CMG
- oonstant, multiplies error errB or erré

. topque limit of CMG torquer motor =

constant, multiplies é to give tq, .

B
integral of eTTym

or err; éultlplled by K,

. output of lead-lag, 1+ as, gimbaLQangle or gimbal-angle

s .
rate-control loop

LL

-angular acceleration -of sensor

time

-momentum of CMG

inertia of CMG gimbal about vehicle sbih axis

‘magnitude of spin raﬁe command

index number of mass containing Sehsor
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Output of Subroutine WBLCTR

Symbol
Phase II Control
Analysis Analysis
nCMG< 1 - indicates CMG torque is being applied to vehicle
0 - indicates CMG torque is not beihg.applied to vehicle
éG B ~ acceleration of CMG gimbal relative to vehicle
{Téﬁﬂ} ftAj} . torque applied at point Aj in lab (from CMG)

Computation Procedure for Subroutine WBLCTR

Control analysis symbols are used.

timel = time
\ = 0. ? = / K,
- . / Ka
LEAD 9] }SGEM 3
Poes = 0.
= O
MG
€ry = C.
KT L
-~ = Kn
er‘l. Lr ﬁ }2
timel = -c.02%

# 0, > Continwne
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IG wl(hMr < 0.02 rad/sec -y )g - O
| | {t } [_0 o o]
90 | ‘N Evd

>, 002 haJ/aec Y ceunnue

;o ]m RIS IR m»/m Gam G

SWIT(H = T (‘ - (/uw'/)';mx))
IG (wA 0. audw =0.) = w,':o

shherwide D w, an (w /W, )

f
e =0 /Z)LM (22)00 ¥ (M DR (33)) M (3‘3)(0:1
| JCHCDE M(Zl))

EL = W\OVMCMG (,dl o | ;
€5 = lOe /e, | o
I( )2 < 0, > B=P l’_'l.T
a. - " ceutinu €
)3 =, -0 /L) .
DE | o o
Z . A . = o 2_”
I bE | o Ep'g" }DE o

> 0. -  couhinye
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If m \

> g0 to ()
MG :
—0 > g h @
4 < 0.0001* —> =0
M 1f e, <o e
oéerr _=0.
Tl
ery, g = K. B
@ ey, = ‘(,L)\ —_ é
P ~
err . = K_ err.
ery = err _

+ (LEAD) €rr
I KT

t%-PI‘(SS -

mow (W, 5B -, sinp)

- -t

: . = k
@ i lthw,‘ < t?L'm L6IM A KoIm
' te  =siN(tg )
> 1 LIM 7 ;ZGIM | ( ?Kcm

);% . B&L Im
= K. _
h&;:osk P |

, - - - ‘t;
t&TGm 7161'4 -~ FDBK

£?G-IM N ti'*rem +tzf’/'$5

o o /
S ” bz‘cm_ I)BGIH

B

* This limit was changed to 0.001 for use with the Phase II program,
The rigid-body runs of Section 5 were obtained using the smaller
limit. '



© H37 A AJ (-w si q.w(' Y (w 4 ))
(1) = “‘0"2%0« J1 osf: ﬁ

| .tﬂ‘ (2) = mon ((sm (}gm) -T wfw [;)
| l:’\’(z) = ~mbw (cosjﬂ((gm\ (w wzjk) |

Che
Eud
>0000' - OPDES ) bE
- )3055 , »
< ->err'~e;r 20
I+ errﬁ 0. }3 )3
70, > COuﬂwut |
T err. < swLTh = (ouhinut
| | SWITCH —>err =erf, -2
7 p P

1 evr £YrY
| @ Ym)v: (w (os};--w Sin}&)
t?Mss CMG | 2

k err

K| F ) .

- = erY - i-(}.EﬁD err
:C\ ,Y.'-L r K I kT

tc{rkGIM B e,rr;;'.. 3 t‘; pASS

'

|-i

ge @

* This limit was changed to 0.001 for use with the Phase II Program
The rigid-body runs of Section 5 were obtained using the smaller
limit, v . .
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@T§ e < conr > g0 6
| S 0. 00V > SPCASE 22/\001('{\1"6-—1:.‘»-64)
A = + W
1 1}305$§Pu\$e 9}§DE )Bpe |

SCPeASE > Cewhinue

U Be < P =g+ G
> } —> contiviue

’hCMG ‘=.| |
€\ = Kc _B

A 5

g to &

* This limit was changed to 0.01 for use with the Phase II program.
The rigid-body runs of Section 5 were obtained using the smaller limit.
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HI3 CONTROL ROUTINE BMCTR (Balance Mass Comtrol)

This subroutine is used to control the metion of the balance mass.
Since the original cbntrol’system dia net'functionvon the flexible ideali-
zation, the final control syétem develdped for the Phase;IIfbfogram differs
from the control system for the rigid-body runs of Sectioﬁ.B."Eor complete~-
ness, both control systems are treated herein. For the fleXibie-body work,
subroutine BMCON was prepared to interface the Phase II program with BMCTR;'
The input data is listed below. The definition of the symbols used (except
.for {Xls}) is given in the table of subroutine input which appears on a

subsequent page. {Xls} is the location of the accelerometer in the local X

axes.

_Input Data Read in by Subroutlne ‘BMCON for Phase 1T Control System

‘{U }and U 3

TBAL? wlCBAL’ x?s} {X

the third component of {U } at t = O, ¥ por? eXSE’ KbESE’

SENS/CM}

Additional Intégration Réquired'in Main Program’

23 and Ué3 mst be ihtegrated ThlS 1ntegratlon is performed in the
Phase II program together W1th all other quantltles ‘that. are 1ntegrated

Computatlon Procedure for Subroutlne BMCON

Phase II symbols are used. First compute the 1nertial acceleratlon of
the accelerometer in the local axes of the mass containing the sensor, the

X 'S axes.
(NS, = ([1] - [F(‘éis)]) ({ia'}* + {E;'is},* + 2[1"(wx)].{flié} N
P R - 0w )1 YY) X E e
3 A 57 1s S _ o

* Terms marked with an asterisk are evaluated one numerlcal-lntegratlon
cycle back At t=0, these terms are zero,
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Next compute the vector from the center of mass of the Space Station to

the accelerometer in the X axis system,

X b= (r e (104 006, )] (8 - Dnty) ) (zag

SENS/CM
where {ZCM} is given by Equation' (A27b) of Appendix C. In order to
evaluate the performance of the control system, compute and plot the third
component of

CMIND

SENS/CM} - X

{x SENS/CM}

The total mass of the system is

M= Mi + M + B+ Z mf
moving -J fluid
masses

M was already computed as the denominator for Equation (A27b) of Appendix C.
The first two components of {U2} are constant and are maintained at their
initial values. The'position and velocity of the balance mass vector are

U,

21 . 0
{Ug} = Uég s {Ué} = ?
U3 Va3

where U23 and U23 are obtained from integration.



Input to Subroutine BMCTR

“pEse

(1) Used only in rigid-body (control analysis) version of subroutine.

Symbol

Phase II Control

Analysis Ang}ysis
135

(A ) (x")

T N O I
[XSENS}"
M

ui my ;

[P (w _S).] [r(a)]

[T(wxéé)] [T(m)j :

. (1)

{uy} ,1£X= .}_

¥ 1587 MEsT
KeXSEj

constant multiplying‘balance_mass_Velocity

H-41

(1)

position of counterweight relative to the lab

velocity of couﬁterWeight_relativé to the lab

angular acceleration of lab about lab X axes

position of acclerometer sensor'réiative‘to lab (l)

mass of System'i

: 1

mass of counterweight ( )
f'th . .. . P .

mass ol 1 moving point mass in lab (i=1, 2)

position of 1 OB moving mass in lab - (i=1,2) (1) v

. ) ) o
w; o _w‘, . w3 o _ ‘wl
SCUR R Wy W o

velocity ofvith~mgss relative to lab -

estimate of mass in mass 1

‘constant multiplying error betweén accelerations commande
.- and sensed :

(2)

(2) Used only in flexible-body (Phase II analysis) version: of subroutine.
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Input to Subroutine BMCTR (Continued)

Symbol
Phase II Control .

Anglysis Analysis .

TBAL . time constant of filter used to fil?e§ accelerometer
. error; set to gzero to bypass filter(?2
wlMAG magnitude of spin speed
wlCBAL magnitude of minimum commanded spin speed at :
which balance mass control system will operate(2)
eiDB error tolerance in mass 2 (balance 3$ss) velocity
(actual minus commanded veloecity) (1
a
CcX23 magnituif of non-zero acceleration for mass 2 (balance
mass) (1
% oMaG magnitude of spin rate command
CMND R
{XSENS/CM} cormanded vector from center of mass of Space Station
to sensor in X axes (2)_
+SENS . . . :
{X } inertial acceleration of sensor in X axes
{ﬁl} {k (l)} acceleration of elevator

(1) Used only in rigid-body (control analysis) version of subroutine.
(2) Used only in flexible-body (Phase II analysis) version of subroutine



Output of Subroutine BMCTR

S ol
Phase IT - Control
Analysis Analysis

)

'{QSENS};

[ CMYDy

(xCMDy
erri fﬁ

{X(2)_}‘

{0,)

- - - - - - - -

H43

position of vehicl?lfenter of mass (lab + counterweight
+ 2 moving parts) - o ' '

acceleration at sensor - (accelerometer) location(1)
position of vehiéle c.m,, commanded(l)

acCelera?iyn commanded at sensorf(éccelerometer)
locationil o

error in acceleration, erry - = 'iCMND(3) ) iSENS(3)

: acceleration of mass 2

(1) Used only in rigid-body (control analysis) version of subroutine.
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Computation Procedure for Subroutine BMCTR
oMV, =0.
. - 0. N X (‘)
Tt time
s SENS (;) = 0.
X

éFILT =0
evrr. = O
X ’ T
, CCMVD§ = LO 0 O]
X
T
= [0 0 0 ]

{x
4 0. — contm

& xB@ £0. = %(3,2) = 0, iGem,

éFILT = 0, go to end

= 0. >  Cemtinut A
70. - ‘i (5’ 2‘) - O. ) 30 k t‘\
' LY _ \ o Eh"

It wic ¢ < ®1cmar > X (3,2) "O',*s
MA .
= - coutinuc

7 % par,

The following equations are used only in the control analysis
version of the subroutine:

{%f = (/) (M A XS *Z ™ {"w}

o] L
' {ng[{w PR =9 D))
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| {ch,,,,,,.,} - VM)( MB { XS})

{" cmvv} {w})( (( Xsews} { X Cmuo :
e Lo A0 -v o
=(17m) (“ﬁg{i“’} t ‘"z{(’;c% )

v, = N Ly KN
N - k Al
xz%c. - €XSE P
6)12,5 = X (3,2.) -~ XZSC

Coll  Subroutine VELCTR |
arqumewte € e ,acc )
( d xzs) XDB _N_”—

)\ = acc acc |

KOsy =ac ace

B

End of control analys1s version of subroutine. -

The following equations are used only in- the Phase II analys1s .
version of the subroutine:
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CHND

Fie et = (r@o* ™1 + rrew*™I1*) EX ens fem

- 7‘:{ (/“Iasr § U, § t U, f‘)z f *)

AN O ‘Y SENS
EV%QX; = X (Q?) - X (3 )
/F 3~8AL = 0) eFur = x
/f ::;44 4 C’)
e - e
’ - X Fter g, _
e,__/Lr- e f/ﬂ/‘/‘ea//)_, eF/Lr"
&4 L
s.-' (,l) _ ] '("') ‘
X (3/ Z) - KDE'.S‘E X (3’2) t KeX.S'E eF/LT

- M e o m e m e = e e = =

* Terms marked with an asterisk are evaluated at the previous
numerical-integration cycle. At + = O, these ter

—— s m i omoad
~y il Se CITiS &are sev

to zero.

5

»
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APPENDIX T
SYNTHESIZED MODES OF THE LABORATORY

The modes of the Laboratory were synthesized using the Phase I Computer
program. The configuration is shown in Figuie 6.1, and the pfbperties of
each substructure are presented in Appendix F. Table Il presents the correspon-
dence between the mass-~point numbers used fof the total structure with the
numbers for the substructures. The number of substructure modes used in the
synthesis were as follpws: '

30 modes were used for the core module

10 modes were used for each appendage

12 modes were used for each solar panel

' Table I2 presents the synthesized modes of the Laboratory. These modes

have been normalized so that each modal mass is unity.
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TABIE T1

CORRESPONDENCE BETWEEN MASS POINT NUMBERS

Module 1 Module L Module 5
Core Module Solar Panel Solar Panel
Total Total Total
Substructure Structure Substructure Structure Substructure Structure
1 1, 1 17 1 45
2 2 18 2 46
2 3 3 19 3 by
3 L L 20 L L8
4 5 5 21 5 L9
5 6 6 22 6 50
6 7 7 23 7 51
7 8 8 2h 8 52
9 25 9 53
Module 2 10 26 10 54
Appendage 11 27 11 52
12 28 12 5
q Total 13 29 13 57
ubstructure Structure L 30 1L 58
1 9 15 31 15 59
5 10 16 32 16 60
3 1 17 33 17 61
i s 18 3L 118 62
19 32 19 gg
20 3 20
e 3 8 7 s
ppencag 20 38 02 66
Total 23 39 23 67
Substructure Structure 2L 4o 2l 68
25 L1 25 69
1 13 26 4o 26 70
2 1L 27 43 27 71
3 15 28 Lh 28 72
L 16

* Mass-point 2 of the total structure was artificially introduced

to serve as the connection point for Modules 2 and 3.




T2

MODE 1 Frequency =
MASS NO. Q(1)
T 0. 11211 €9E-087 7
2 0.9322054E- 06
3 0.7426529E~06
T8 TT0.3637018E-06"
§ =0.147B2€9E~07
& =-0,20367S5E~-06
T 7?7 ~0.,8B817460E-06
8 ~-0.1515587E-05
9 0.1252471E-03
TTI0TT 0.23831286<03
11 0.3513941E-03
12 0.4644787E-03
_ 13 =-0.1233825E-03
14 =0.2360476E-03
1S -0.3495289E~03
_ 16 -0.4626138E-03
17 -0.5705474E 00
18 0.5628632E 00
19 -0.2575750€ 00
20 0.2508915E 00
21 ~047484553E 00
22 0473907676 00
23 <0.3379288E 00
26 0.3289275€ 00
25 -043092003E 00
26 ' 0.3043393E 00
27 =-0.1395519E 00
28 0.1356097€ 00
© 729 -0.8169122€ 00
30 0.8072077€ 00
31 -0,368B650E 00
T332 0.3591609E 00
33 -0.263B019E-02
v 3a 0.1308196E-02
35 ~0,1122383E-02
36 0.7968415€-03
37 =-0.4851837€-02
"3 ~0.7820301E-02
39 0.4701565E-0a
40 -0,.2437137E~-04
a1 -0,3292012E-02
42 0.7989381E-05
43 " -0,7080385E-03
447 T-0.1858219€-02"
a5 0.5712085E 00
46 =0.5636138E 00
"" 477 0.2578463E 00
48 —0.2509531E 00
49 0.7493244E 00
80 <0.7400609€ 00
S1 0.3382B64E 00
52 ~0.3294007E 00
53 C«3095565€ 00
54 -0.,3047465E 00
55 0.1396$71E 00
" 86 ~041358069E 00
57 0.8178622E 00
S8 -0.8082812E 00O
59 0+3692568BE 00
60 =0.35967€4E 00
61 26371€SE-02
ez 1312202e-02
63 0.1120169€E-02
64 -0,8006557E-03
765 0.4790053€E~02
66 0.7824093€~02
67 -0.48033B9C-04
68 0+2119922€E-04
69 0,3250€45€~02
70 -0.1102054E~06
TP T 0.6986093E-03

0,18351323€-02

.198874 Hz

Q(2)

0.2018765E~09
042130753E-09

0.1958213E-09

TABLE I2
SYNTHESIZED LABORATORY MODES

Q{3)
0.8337428E-12 "
0.4339812E-12
0.526443S€-12

'0.232%329E-09
0.1208256E-09
0¢1190724E-10

' =0.6813433E-09"

-0.7928840E~09
0.2018723E~09

0+2018615E-09

0.201'8589€-09
_ 0.2018735E-09

0.2018694E-09

0.20186656~09

0.2018650E-09
-0.2610889E-09
~0.1387681E~08
~0.5501979E~-09
-0.1060013E-08
~0.2413478E~ 09
~0.1397707E-08
-0.542216SE-09
-0.1064877€-08
-0.,2744458E- 09
‘~0.1370801E-08
-0.5559579E-09
-0.1052690E=-08
"~0.,2163440E~09
-0.1401911E-08
-0.5323748E-09

0.2018663E-09

C0.J5973097E-1 3

0.1350842€E-11
0.2783560E-12

i 2783860E-12

0,2783560E~12
-0, 3595260E-11

THETA(1)

0.7004969€-15"

0.3386863E~-13
-0+4956326€-13

THETA( 2)

THETAC(3)

0.3187705E-08
0+3147599E-08
0.314706SE-08

~0.4635154E-12

-0.8471206E-12
-0.1100793E-11

0.3143356E-08

0.3135952E£-08
0.3127211E~-08

~0.1813308E-11

0+3852099€-11
0+3035956E-13

0.2969388E-08

0e2727572€-08
0+3147638€-08

TX0,7601153E-11

-0:,9462971E~-11

-0.1237754E-10
0.4433343E~11

0,9545384E-11

0.,1042751E-10

0,1245567€-10
-0.1111123E-07
-0.1109822€-07
=~0.1110880€-07
-0,1110297E-07
~0.1079089E -07
~0,10781 78E-07
-0,1078909€-07
-0,1078502€-07
-0y 7364395E-08
~0,7353421E-08
-0,7362459E-08
—0,7357542E-08

0.2681633E~-13
0+2465237E-13

0.2407537E-13
.023001926E-13

042766902E-13
0.2623732E~13

0.2589607E-13

0.3852099€~11
0.3852099E~11
. 0+3852099€~11
0.3852786E~-11
0.3852099E~-11
0.3852099€-11
0.3852099€E~11
0.3852099E~11
0.3852099€~11
0.,3852099E-11
0.3852099E-11
0.3852099€-11

~0,604676SE-08
-0,6046765€-08
-0,6046641E-08

"0.4389314E-11

044640258E~-11
0.4461886E-11

0.31a7679E-08
0.3147710€-08

0.3147727E~-08
0-3147638E 08
0.3147679€-08

0+3147710E~08
0.3147727€-08
0.27275725 08
0.2727572€-08
0.2727572E~-08

" 0.2727572e-08

0.2727572F-08
0.27275726-08
0.27275726-08
0.2727572E-08
0.27275726-08
"0.2727572E-08
0.2727572€6-08

0.2727572€~-08

"0.6222934E~02
0.6222919E-02
0.6222680E-02

0.9416044E-06
0.9415951£-06
0.93793526-06
0.9305915€-06
0.9232268E-06
0.91715306-06

0.7920815E-06
0.9418990E-06
0.94215196-06
0.9422759€E-06

0+9423104E~-06
0494189374E~06
049421493E-06
0.9422728E-06

..0.9423072€-06

0.7920815E-06
0,792081SE~ 06
0.,7920815E~-06
'0.7920815E-06 -
07920815F-06
0.7920813£-06
0+792081SE~06
0.7920815F-06
0.792021SE-06

T0.7920815€-06

0.7920815£-06
0.792081SE-06
0.79208156-06
0.7920815E-06

0.7920815E-06

~0.2817644E-09
-0.13475056-08
~0.5596537E-09
~0.1043104E-08
-0.7$53604E-09

'0.625328
~-0.2215364E~08
~0.7931944E-09

-0.7548278E-09
-0.7928840E-09
-0.7937426E-09

~0.7%42880E-09

-0.2595075E-09
-0.1387680E-08
-0.5494942E~09
-0.1060156E-08
-0.239923
'-0.139780¢
-0.5416072E-09
-0.1065008E-08

~0,2728995E-09

-0.1370859E-08

~0.55682308E-09 .

" ~0.1067610E-08

~0,6046641E~08

-0,2377443E£-09
-0,2349780E-09
-0.2373768BE-09
~0+2361369E-09

~0+6046530E—-08

0.,8641235E-11

0+3817426E~11
0.4085564E~11
0.3931231E-11
0¢4302072E-11
0.4645661E-11

T 0.6222680€-02

0.2153270E~04
0.3233210€-05
0.2017448E-04
0.1098139€-04
0.6222118€E-02

0.7920815E-06

0.7920815€~-06
0,7920815E-06
' 0.7920815E-06
0+7920815E~06
~-0.6268554E~05

~0.2308061E~09
-0.2369969E-09

) e 238628BE-09

0.3800192E-11
0+3413964E-11
0.4167668E-11

-0.4722377€-08
-0.4605577E-10
-0. 1549498E-08

0.5841124E~11
0.3852099&-11
0.6014625€~11

"9.2182665€E-04
-0.9548537E-0S

0 e1699060E-04

0.4670851E-02
042727572E-08
0.1568278£-02

-0.3150762E-08
0.1115218E-07
0.1113911E-07

T 0. 1114974E<07

0.1114389€E~07
71216E-07

0.6475861E-11
0.3852099E~-11
0.3852099E-11

T0.3852099E-11
0.3851116E~11

0.3852099€-11

70315E-07
0.1071038E~-07
0.1070635£-07
0. 7291 728E-08"
0.728087SE-08
0.7289810E-08

"0.3852099

0.3852099E-11
0.3852099E-11
0.3852099E-11
0.3852099E-11

0.3852099€-11

~-0.2152410E~-09
-0.1402239E-08
-0.5319205€-09
-0.1067773E~-08
-0.2804343E-09

" '-0.,1052900E-08

0.7284946E-08
0.6104191E-08
0.6104191E~08

" 0.6104067€E-08

0+.6104067E-08
0.2384752E-09

0.,3852099E~11

0.4358906E~-11
0.4642143E-11
0.4469742E-11
0,4644342E-11
0.3822711E-11

~0.1337771E-08
~0.5589700E-09
~0.1043427E~08

~0.7952925E-09

0.6253285E-09
~0.2215364E~08

T -0.7931862E-09

-0.,7947745E-09
~0.7928840E-09
-0.7937193E~09
-0.7942496E-06

T T042356300E-05

0.2381009E-09
0.2368254E~09

0. 6103953608 ~

0.2393832E~09
0.2313400E-09

0.2377163€E=<09

0.4776613€-08
0.4659419E-10
0.1565075E-08
0.3190050€-08

0+3942666E~11
0.4303667€-11

0.3119563E-02

0.2727572E-08
0.27275726-08
'0.2727572e~08
0.2727572E-08

062727572F-08

T0.2727572E-08

0.2727572€-08
0.2727572E-08

T 0.2727572e-08

0.2727572€-08
0.2727572E-08

0.79208156~06

04792081 SE-06
-0.1532101E-05S

~0.6032360E-05
0.7920815E-06
~0.3764398E-05

T20.5241245E-08

0+792081SE~-06

0.7920815€-06

0.7920815E-06
0.7920815E-05
0.79208156~06
0.7920815€6-06
0.7920815E-06
0.7920815€-06
0.7920815E-06
0.79208156-06
0.79208156=-06

~0+.6230686E-02
~046230675€~-02
~0.6230436E~-02
~0.623043KE-02
-0.2155211€-04

0.272757T2E~08"

0,7920815E-06
0.7920815E-06
0.7920815E-06
0.79208156~06
0.7920815E-06
0.792081SE~06

0.8546469E-06

0.4083739E~-11 "

~0.3231158E-05
-0.2019241€-04
~0«10988375E-04

0.7920815E<06 |

047920815E-06
0e792081 SE- 06

"0.4650649E-11"

0+3789184E-11
0.3413205E-11

0.5872768E-11
0.3852099E-11
0.6105845E~11

0.6559795E-11

0.aT78433E~11

-0.6229874E~02
~0.2184621€E-04
0+.9566300E-05

=0, I700500€-064"

-0.4676670E~-02
0.2727572E~08

-0.1570227€-02"

-0¢3123446E-02

-0.6186246E-05
0.7920815E-06
0.79208155-06

~0.1528756€E-05

-0.5954093E~-05
0.792081S5E-06

-0.3723062E-06

-0.5176122E-05



TABLE I2 - SYNTHESIZED LABORATORY MODES

MODE 2 Frequency = .198979 Hz

MASS NO. ac) Q€ 2)

T 0.1791825E~-02 =-0.4205827E-09
2 0.1489587E-02 0.4246712E-09
3 0+1186227E~ 02 0.19731 76E-08
a 0.5797613E~ 03 0.8989287E-09
5 =~042%45207E~04 =-0.5202700E-08
6 ~0.3272020E-03 -0.6474366E~08
7 =-041406009E-02 =0.1543033E-09
8 <-0.,2407280E-02 0.227889SE-08
9 0.1489617F-02 0.4246825E-09
10 0.14898326-02 0.4246989E-09
1 0.1490093E~02 0.62467087E~09
12 0.1490354E-02 0.,4267134E~09

‘T3 0.1489780E-02 0.4236834E-09
18 0+1490144E-02 0442470126~ 09
15 0.1490855E- 02 0+4247114E~-09
16 0.1490964E-02 0.84247167E-09°
17 0.5293770E 00 0.2359543E~-08
18 =~0.6009079E 00 0+42174257€-08
19 0.2172709E 00 0.2317642E~-08
20 ~0.,2894946E 00 0.,2230276E-08
21 0.6$59722E 00 0.2376330E~-08
22 -0.7879210€ 00 0.2160961E-08
23 0.2864765E 00 0.2325012E~08
26 -0,3787484E 00 0.2224032E-08
25 0.2852181E 0660~ 0.,2345070E~08
26 ~0.3258844E 00 0.2189987£-08
27 0.1162641E 00 0.2311083E-08
28 -~0.15S78049E 00 0.2237387€-08"
29 0.,7607378E 00 0.239501 8E~08
30 -0.8596284F 00 0.2149741E~-08
31 03137305 00 042333055€-08
32 -0.,6126130E 00 0.2218547E~08
33 ~0.6629308E-03 0.2332798E~08
36 -0.31934250-02 0.22079KSE~ 08
35 ~041751917F-02 0.23052876-0A
36 -0.3036375E-02 0+2245289E~08
37 -0.4943981E-01 0.,22780256~-08
38 0.,30540136-02 0.2386421E-08
39 -0.8211650E-03 0.2172224E-08
40 -0.2520416E-02 0.2278784E-08
41 ~0.3310515E~-01 0.2278212E-08
42 ~042407287€-02 0.227889S5E-08
43 —0.7532164E-02 0.2278592E-08
44  -0.18468346-01 0.2278401E~08
LY 0.5286627€ 00 0.23669356-08
746 -0.6002035E 00 0.21631226-08
a7 0+2169484E 00 0.2321638E-08
48 -042891810FE 00 0.2224962E-08
49 0.6950352E 00 0.2385991E-08
S0 =0.7869958E 00 0.2148171€-08
51 0.2860534E 00 0.2329901E-08
52 -0.3783368E 00 0.22180246-08
53 0.2848309E 00 0.2350561F~08
54 <~0.3255036E 00
55 0.1160892€ 00
56 -0.,1576358F 00 0.2232941E-08
57 0.7597149E 00 0.2407239€-08
58 -0.8586180F 00 0.2135699E-08
59 0.3132687€ 00 0.2338936E~08
60 -0.4121636¢ 0O 0.2211996E-08
61 ~0.66624146-03 0.,233673SE-08
62 <-0,3192178€-02 0.2201529E-08
63 ~0.17533764E~02 0.23078526-08
64  -0.3035371E~02 0.2241871E-08
65 -0.4944605C~01 0.2277874E~08
66 0+ 3044) 74E-02 0.2386421E~08
€7 -0.R2110176~03 0.2172224E -08
68 ~0,25200643E-02 0.227876SE-~08
69 ~0.,3310936E-01 0.2278093E-08
70 ~0424072736-02 0.2278895€-08
71 -0.75330556-02 0.2278539E-08
72 -0.1847071E-01 0.2278315E~-08

Q(3)
-0+1008118E-09
-0.1007485E~-09
~0.1095788E-09
-0.9045707E~10
-0.9933553E-10
-0.1085990E-09
~0.1085990E-09
-0.1085990€~09
-0.1592293E~11

0.8834171E~10
0.1801 703E-09
0.264881 7E~09
~0.1999831E-09
-0.2901 765E~09
-0.3810479€~09

'-0.4693552E-09

~0+10987676-07
-0.1097211E~07

~0.10968477€-07

~0+1097780E-07
~0.8754920€~-08

-0.8744102E-08"

-0.8752853E-08
-0.874801 7E-08
-0, 770374 7E-08
~0.7691462E-08
~0.7701530E-08
-0.7696013E-08
~0.190051 7€~08
-0.190051 7E~08
-0.190041iE~-08
-0+.1900411E-08
-0¢1316601E-09
~0.1294694E-09
-0.1313346E~09
-0.1303525E-09
-0.19003i4E-08
-0¢1323333€~-09
~0.1261396E~-09
-0.1309708E-09
~0.149960SE-08
~0.1118514E-09
~0.4273177€-09
~0.9433794€-09

0.1216598€E-07

0.1214830E-07

0.1216271E-07

0.12154B4E-07

0.9474785€-08"

0.9462717E~08
0+9472487E-08
0.9467083E~-08
0.8351634€E-08
0. 8337970E-08

0.8349151E-08

0.8343026E-08
0.2013365€E-08
0.2013365E-08
0.2013240E-08
0.2013240€~08
-0.8440429E-10
-0.B707457€~10
~0.8478984E-10
~0.8598690E-10
0.2013126E-08
~0.8357966E~10
-0.9112902€E~10
-0.8521388E-10
0.1558329E-08
—0.1052044E-09
0.2750371E-09
0.90637126-09

THETA(1)
0.1939374€~-11
-047436377E-12
-0.3785834E-11
~0.1145151E-10
-0.1277346E~10
-0.8142181E-11

0.2109161€-10

0.2858368E~-12
-0e7421111E-12

-0.7437545€~13"

-0.7445744E~-12
-0.7461042E~12

-0+7427129E-12

-0.7448572E~)2
-0.7459193€E-12
' -0.7475141€E-12
0.2858368€~12
0.2858368E-12

0.2858368E<12°

0.7185675SE~13

0.2858368E-12
" 0.2858368E~12

0.2858368E~12

0.285836RE-12
T 0.2858368E-12
0.2858368E~12
0.2858368E-12
0.2858368E-12
0.8283076€E~12
0.9327582E~12
0.9074131E~-12
0.9718042E-12
043229650E-12
0.41913746-12
0.4324218E~12
0.5654184E-12
0,1038019€E-11
0+1566842E—-12
0.1817519€E-13

0.5183174E~12"

0.2021398E-11
0.2858368E~-12
0.1720137E-11
042233758E~11
0.29858368E~12
0.2858368E-12
0.2858368E~12
0.7188244E-13

'0.2858368€E-12

0.2858368€6~-12
0.2858368E-12
0.2858368E~-12
0.2858368E-12
0.2858368E~12
0.2858368E-13"
0.2858368E~-12
0.9127647E-12
0.1035526E-11
0.1002714E~11
0+1078394€E~11
0+3300766F~12
0.4431018E-12
0.4646600E-12
0¢6209615E-12
0.1151031€-11
0.1283704E=-12
~0.3440898E~13
0.5746317E-12
0.2328140E-11
0,2858368E~-12
042123991E-11
0.2690861E-11

(Continued)

THETA( 2)
0.5034464E-05
0.5034334E-05
0.5033049E~05
0.5025281E-05
0.5010280€-05
0.4993463E~05
0.,4708405E~05
0.4298497€-05
0.5034398E-05
0.5034466E-05
0.50345176-05
0.50345443E-05

0.5034398£-05"

0.5034466E-05
0.5034517€-05
0.5034544E-05

0.4298497E~05

0.4298497E-05

0.4298497E-05

0,429B8497E-05
0.4298497E~-05
0.42984976~05
0,4298497E-05
0.4298497E-05

0.4298497F-0%

0.4298497E-0S
0.4298497€-05

0.42984976-05

~0+6208487E-02
-0.6208602E~02
-0.6208260€-02
-0.6208353E-02
-0.1551583E~04

0.1581077E~05
~0,1437377€-04
~0+5933633€~05

-0.6207738E~02

~0.1561908E-04
0.1413182E~-04
-0.1156513E-04
-0.4658710E-02
0.4298497E-05
-0.1560613E-02
~043109660E~02
0.4298497E-0S

"0.42984976-05

0.4298497F-05
0.4298497E-05
0,4298497€-05
0.4298497E-05
044298497€-05
0.42984976-05
0,4298497£~05
0+4298497E-0S
0.4298497€-05
0.4298497E-05
-0.6200697€~02
-0.6200813E-02
~0.6200466E-02
-0.6200559E~02
-0.1548377F=-04
0.15851336-05
-0.1434842F-04
-0.5919852-05
~0.6199952(-02
~0.1559158E~04
0.1411984F-04
-0.1154379E~04
~0.4652862E-02
0.4298497E~05
-0.1558650E-02
~0+3105754F-02

THETA(3)
~0.6207665E~09
-0.6203356E-09
-0+6186383E-09
-0.6137493€-09
-0,60909486-09
-0.6054106€~09
~0.5661152E-09
-0.5255891€~09

0.5497010€-09
0.1451968E-08
0.1852621F~08
0.1952082E~08
~0.1790684€<08
~0.2693235€E~08
-0.3094039E~08
~0.3193546E-08
~0.5255891E~09
-0.5255891E-09
T-0.5255891{E-09
~0.5255891£~-09
~0.5255891€-09
-0,52558%1E~09
~0.5255891E~09
-0,.5255891£~09
-0.8255891E-09
-0+5255891E~09
-0.5255891E-09
" ~0.5255891F<09
~0.5255R91E~09
-0.5255891E~09
~0.5255891E~09
~0,5255991E- 09
~0.5265891E-09
~0.5255891F~09
-0.5255891E~09
~0.5255891E~09
-0+6589838€-04
~0.5255891E~09
-0.5255891E-09

" <0.5090366E-05

~0.6266292E-04
-0.5255091E-09
~0.33152546-04
~0.5215603E-04
~0.5255891E-09
-0.5255891E~09
-0.5255891E-09
~0.5255891E~09
~0.5255891E-09
~0+5255891€-09
~0.5255891E-09

~0.5255891€-09
~045255891E~-09
-0.5255891E=-09
~0.52558916~09
-0.5255891E-09
-0.5255891E-09
~0.5255891E~09
-0.5255891€-09
-0.5255R891F-09
~0.5255R91E~09
~0452558916-09
~045255891E~-09
-0,5255891E-09

0.6590648F-04
~0.5255891E~09
-0.5255A91E-09

0.5092267E-05

0.6267072E-04
-0.52558915-09

0.3315738E-04

N0.821A27AF=-0Na



MODE 3 Frequency = 214268 Hz
MASS NO. Q1) Q(2)
1 0.6959897E~02 =-0.9774679E~09
2 0.29449SBE-02 =-0.10451B0E-08
3 '+ 1072409E-02 0.7947081E-09
4 -0.9104963€-02 0.2136588E-08
S ~0e1713134E-01 0.2062362E-08
6’ T0.21140126-01 T 0.i72721iFE-08
7 -043581216E-01 -0.9460952E~-09
8 ~0.5038800E-01 0.5823597E-09
‘9 0.29455156-02 -0.1045192E<08
10 0.2946451E~-02 -0,1045211E-08
11 042947483E-02 =-0.1045233E~08
“127 " 0.2948524€-02" -0.1045231E~08 "
13 0.29449176-02 =~0.10451916~08
14 0.29453186-02 =-0.1045209€-08
718 0.2945825E-02 ~0.1045230E-08
16 0.2946320E-02 =0.1045239E-08
a7 0.4299585E 00 -0.,8719743E-09
18 T 0.34589926E 00  0.2845044E-08
19 0.,4062031E 00 0.3929733E~-10
20 0.36H510SE 00 0.1637080E-08
21  0.5817696E 00 -0.8657006F-09
22 0.4665485t 00 0.26811275€E~08
23 0.5501484E 00 0.4375508E-10
24  0.4984989E 00 0.1623856E-08
25 0.2037380E 00 -0.89721876-09
26 0+167SS19€ 00 0.2860236E-08
TT27 0.1934657€ 00 0.2810445E-10
28 0417723356E 00 0.1643767€~08
29 0.6359744E 00 -0.8753909€-09 -
307 0450703226 00  0.2762030E-08
N 0.6003522€E 00 0.4243274E-10
32 0.5425528E 00 0.1605094E-08
33 ~0.5639643E-01 <-0¢9402734E-09
36 -0.,4015701E-01 0.2857919E~-08
35 =~0.5189484E-01 0.1069400E-10
736 -0.4462350E-01 0.16443G5E-08
37 0,5714343E 00 0+5895580E - 09
38 <-047205188€~01 -0.5601539E~08
397 <0,2597528E-01 0.6874007E-08 -
40 =-0.482779SE-01 0.5832488E~-09
a1 0+.3578038E 00 0.5880059€~09
42 -0.503B797€-01 04582359 7E= 09
a3 0.2094520F-01 0+5848453E- 09
4a 0.1657814E 00 0.5864333E-09
4s 0.4299760E 00 ~0,7623298E~09
a6 0.3459172E 00 0.2754601E-08
47 0.4062208E 00 0.9235725E-10
48 0.3685285E 00 0.1590854E-08
49 0.5817922E 00 =-0.7316501E-09
1] 0.4665720E 00 0.2693336E~-08
s51 0+5501711E 00 0.1078455E~ 09
52 0+4985218E 00 0.15656356-08
53 0+2037475E 00 -0,8143162E~09
sa 0+1675615E 00 0.2795378E-08
' '88 0.1934754E 00 0.692778IiE~i0
56 043772431E 00 0«1608891E~08
87 0.6359S78E 00 =0.7189791E~09
58 0.5070563E 00 0.261508iE-08
59 0.6003757€ 00 0.1167839% -09
60 0.5425767€ 00 0,1534364E-08
61  ~0.5639646E-01 =-0.8862682E-09
62 -04,4015718E~01 0.2816805€E-08
63 -0.5189493F-01 043920446
64  -0.,8462365E-01 0.162025
33 0.5714579E GO0 0.5904328E~09
66 =0,7205170€E-01 =-0.5601539E~08
67 -0.2597550E-01 0.668740076-08
68 -0.4827808E-01 0.5833523E-09
69 0.357818RE 00 0.5886904E-09
70 -0.5038801E-01 0.,58238976-09 "
71 0.2094723E~01 0.5851439E~09

72 0.1657889C Q0

TABLE I2 - SYNTHESIZED LABORATORY MODES (Continued)

a(3)
-0.3635972E-09
—03623744E-09

C3995129E-09
-0.2965326E-09
-0.3614964E-09

~0J3I7EBTE61E-D9 ~
-0.3768761E-09
-0+3768761E-09
-~0.8300589E-09
-0.1266202E-08
-0.1797031£~-08

THETA( 1)
0.1607973E-10
. 043691026E-11
0.3551903E~11"
0.2054895E-11

-0.2261580E~12

THETA(2)
0.6690304E-04

0.6690220€-04

" 0.6689505E-04
0.6685772E~04
0.6682603E~04

TS0V1959186ECTT
~0+3290731E~11
=D+1670057E-10
0.3678080E-11
0.3661275E~11

0.3653477E-11

0.6678641E-04
0.6634383E-04
0.6615877E~04
TT0.66303196-04a
0+6690423E-04

0.6690502E~04

THETA( 3)
0.,2236561E-08
0.2243278E-08 _
"0.,2221858E~ og
0.22093236-08
0.2194855E~08

T0.2180266E-08

0.2030135E-08
0.1807530E-08

0,49242356-08
0.6991584E-08
0.7909538E~08

-0.2137372€-08

0., 1093406E-09
0.54660706~-09

0.+3682695E-11

0.3669742E-11

0e S869256E-09

041382634E-08
-044089504€~08

-0.4070529€E-08"

-0.,4085972€-08
~0.4077471E-08
0.24664893E-08
0.2477677E -08
0+2467408E-08

0.2473124€6-08"

—0.3943466E-08

-0.3933817€-08
0.1505169E-07
0, 1505169E~07
0.1505185€-07
0.1505185€~07
0.6163441E~09
0.6196739€~-09
0.6168077€-09

0.61830065E-09 ~

0.1505198E-07
0+6152803E~-09

0.6172998E-09
0.1132090E-07

-0.1776952€E~09

0.4373362E~-08
0.7838949E~08
0+214645%€E~07
Ce2141924E~07
0+2145613E~07
02143583E~07

"0.1084666E-07

0.1081580E-07
0,1084068E-07
0.108268BE-07
0.1571910E~07
0.1568312E-07

041571268%E-07 ~

0.1569652E-07
-0.1291668E-07
-0.1291668E-07
-0.1291703€-07
-0+1291703E-07

~0.1365992E-08 "

~0.1373570E-08

-0.137045
~0.129173SE-07
-0.1363606E~08

-0.1385033E-08

-0.1368206E~08
-0.9796796E-08
-0, 5772804E-09
-0.4621345£-08

-~0e7213416E-08

0.1012714E-08

0. 62386 945E<09

0.3659555E-11
-0.1670057€~-10

~0+1670057E~10
=0.2096330E-10
~0.1670057€~10
~0.1670057€~10
=0+1670057E~10

~0.1670057€~-10
-1670057E—10

=0.1670057E~10
~0+1545868E~10

~0.1628316E~10 "

~0.1553929E-10
-0,16047StE~-10
-0.,1619618E~10
~0.1695688€~10
~0.1585304F~10
'=0.1690520E~-10
-0.1566461€E-10
54691E-10
V'S103E-10

-0.1633089€-10
-0.1419370€-10
=0 167005 7E~10
-0+1425556€E~10

~041360506E-10

-0.1670057E~10

~0.1670057E-10

~0.1670057E-10
«2096329€E~10
‘-0 1670057E-10
- ~041670057E-10
~0.1670057E-10
T0.1670057E~10
~0+1670057€E-10
-0.1670057E-10
“0.1670057€-10
~0+16700576E~10
~0e¢1434665E-10
-0.1526418E-10
~0.1434417€E-10
-0.,1490973E-10
~0.1599818€E<10
~0+1684201E-10
“0.1538632E~10
T -0.1655764F-10
-0.16433037E~10
-0.1798707E-10
~0.31676706E-10
-0.1586621E-10
-0.1100137E-10

-0.1670057E~10 "

-0.1124577€-10
-0.9742910£-11

0.3663814E-11

"~0.16T70057E-16

=0 1670057E<107

0.669052aE-04
0.6690319E-04
0.6690423E-04
0.6690502E-04a
0.6690544E-04
0.6615877E-04
T0.6615877E-04
0.6615877E-04
0.66138776~04
0.66158776~-04
0.66158776~04
5877€-04
587T7E~04
0.6615877E-04
0.6615877E~04
"0.6615877E-08
0.6615877E-04
~0+4948387E~03
~0.49327376-063 "
-0.49459386~03
~0,4934741E-03
0.6336246E-04
0.6135984E-04
0.6187233E-04
"0 6252497E-04
-0.4939828€-03
0.6678059€~04

T 0.5851334E-047

0.6210874E~04
-0.3549599€-03
0661587 7E-04"
-0.7691450E-04
-0.2159375E-03
0.6615877E-04
0.6615877E~04
0.6615877€~04
0 15877€-04
0 15877E~064
0.6615877€-04
0.6615877E-04
' 0.6615877E-04
0.6615877E-04
0.6615877E-04
0.66158T7€-04
0.6615877E~04
~0,8948353E-03
~0.4932694£-03
~0.4945914€~03
~0.4934710€~03
0.63361666-04
0.6135956€E-04
0.6187163E~-04
0.6252462E-04
~0+4939791E-03
0.6677968E~06

0.5851 Ji6F=04"

0.6210821E-04
~04+3549578E~03

0.66158%76-0a

-0.7691415E-04
~0.2159362E-03

0.8137a13E-08

~0.4415073E~09

.T0.2512045E-08

TZ0.33a315726~08
~0.36598726-08
0.1807530E-08
0.1807530E-08
0.1807530E~08
0.1807530€~-08
'0.1807530F-08
0.1R07530F-08
0.18075306-08
0.1807530E-08"

0.1807530E-08
0.18075306~08

0.1807530E~-08
0.1807530E~-08

T0.18075306~08

0.1807530€~048
0.1807530€-08
0.1807530E~08

0.1807530E-08

0.8614466E-03
0.1807530E-08
0,.18075306-08""
0.8579255E-04
0.8203161€-03
0J1807530E-08"
0.4440126E~013
0.6864716E~03
C.1807530E~08
0.1807530€~-08
0.1807530E-08
0.18075306~08
" 0.1807530E~08
0.1807530F~08
0.1807530E-08
0,18075306~-08"
0.1807S30E-08
0.1807530F~-08
0.1807530E-08
0,18075306~08
0.1R07S30E-08
" 0.1807530£-08
0.1R075306-08
0.1807530E-08
0,1807530€-08
0+1807530€-08
0.1807530E-08
0.1807530E-0A4
~0.8614R11€-03
0.1807530E-08
0.1807530E-08
-0.8579278E-04
-0.8203494E~03
"0.1807530E~08
-0.4440309€-03
-0.6864988E-03

" 0.1807830E~08



MODE 4 Frequency =
MASS NO. Q1)
I ~0.1785249E-06
2 -0.897440SE-07
3 -0.68299856-09
4 0.1858547E=-06
5 0+3683983E-06
6 0.45897S1E~06
7. 0.7881909E-06
T8 0.1124106E-05
9 0.1279192E-01
10 0.2442737E-01
1 0+3606496E-01
12 0.4770282E-01
13 =-0,1279211E-01
T4 -0.2442754E-01
1§ -0.3606514E-01
16 ~0.4770299€-01
717 ~0.3942336E 00
18 -0.4041547€ 00
19 <=0.3967437€ 00
20 =-0.4011922F 00
21 -0.5044679E 00
22 -0.5185112E 00
23  -0.5082234E 00
24 -0.5145198E 00
25 -0.2151651E 00
26 -0,2193940€ 00
27 -0.2160801E 00
28 -0.2179778E 00
29 '~0.5271875€ 00
30 =-0.54277B4E 00
31 -0.5314374E 00
7327 -0.5384260E 00
33 0.1119760€E-02
3a 0.34171036-02
35 0s19856649E~02
36 0¢3012593E-02
37 -0.5349132€ 00
38 -0.1831705E~02
39 0.4716381E~02
40 0.2587236E~02
41 -043421621E 00
42 0.9442873E-03
43 -0,4662099E-01
44 -0.,1709351E 00
45 0.3942141E 00
46 0.4041386F 00
47 0+39672S1E 00
8 0.40117S3E 00
49 0.5044417€E 00
50 0.5184894E 00
‘81 0.5081985€ 00
52 0.5144967€ 00
53 0.,2151561E 00
54 0.2193860E 00
SS 0,2160711E 00
s6 0+217969S5E 00
57 0.5271588E 00
58 0.5427547€ 00
59 0.5314102E 00
60 0.5384010F 00
61 -0.1117234€-02
62 ~0,34153246-02
63 -0,1983329E-02
64 -0,3010611€-02
6S 0.5348870E 00
66 T 04,1834959€E-G2
67 -0,4715245E-02
68 -0.,2585082E~02
69 0.3421486E 00
70 -0.9420398E~-03
71 044661997E~01
7> 0.1700275F 00

TABLE T2 - SYNTHESIZED LABORATORY MODES

.216833 Hz

at2)

-0.2232897€~08
-0.1472247E-08
-0.1892689E-08

0.1056306E-08
'043052520E-09

0.4785732E~-09
-0.2259997E-08
-0.2000537E-09
-0.1472232E-08
-0.1472209E~08
-0e14722298-08
~0.,1472242E-08
-0.1472267E~08
-0.1472296E-08
-0.1472281E~08
-0.1472271E-08
© 0e.2213554E-08
~042892292E-08

0.8257379E~09
-0.1528054€E~08

0.2256886E-08
-042951456E~08

T0.84261896-09

-0.154991 8E-08
0-21570455~9§
0-80382868 09

-0.1508839€E~-08

0.2288516E~08

-0.3017102E-08
0.8549592E-09
~0+1573791E-08
0.2088323E-08
~0.2799249E-08
0.7772700E-09
-0.1492075F-08
-0.1956899E-09
0.63284176-08
~0.6564981E~08
-0.1695291E~09
-0.1966351E-09
-0.2000527€-09
-0.1985580E-09
-0.1975922E~09
0.2179352E-08
~0.2858143€~08
0.8086198E-09
~0.1510972E~08
0.2215685E-08
-0.2910313E-08
0.8226977E-09
~0.1530042E~08
0.2130174E-08
~0.2814836E-08
0.789680SE-09
~0.16947156-08
0.22407126-08
~0,29693S3E~08
0.8324259E-09

~0.1551310E-08

0.2069049E-08
-0.2780002E~08
0.76623326-09
-0.1481048E-08
-0, 1957156E-09

0.6328417E-08

~0.6564981E~08
~0.1995304E-09
~0.1966547E-09
~0.2000527E-09
-0.1985654E~09
-N.1976058E< 09

Q(3)
0.2288768E~-10
0.2290208E-10
0.3302761E~10

»—0.2873686E 10

0. T17a864E~09
0.7285028€-11
0.7285028E-11
0.7285028E-11

-041646285E-08

-0.3129694E-08

~0.4336879E~08

-0+6390643E-08
0.1687085€~08

0.3192348E-08
0.4477528E-08
0.6561 71 7E~08
~0.,2686635€=-07
~0.2684152E-07
~0.268616SE~07
-0.2685052E-07
~0,3454685E -07
-0.3453176E-07

~0.3454311E-07"

~0.345363SE-07
-0.1335884E~07
-0.1333191e~07
~0+1335470E~-07
~041334264E-07

~0.2930494E-07
-0.293043SE~-07

'~0.2930494E-07"

~-0.2930238E~07 ~

-0.1055929E-08
-0.1041197E~08
-0+ 1054280E-08
"~0,1067676E~08
~0,2930384E-07
-0+1060911E-08
-0.1019271E-08
-0.1052829€-08
-0.2344997E-07
~0.1988978E-09
-0.7342031E-08
-0.1622249€-07
0.2846585E-07
0.2843B892E-07
0.2846084E-07
0.2844877E-07
0+3224383E-07
0.32227976-07
0.32240206-07
0.3223311~07
0.1464971E~07

T 0.1462572E-07

0e1464579E~07
0.1463503F-07
0.2807323E-07
042807 323E-07
0.2807272E-07

0.2807272€<07 ~

0. 1054586E~08
0. 1041423E-08

T 0.167S7a8EC10

0.1053096€£-08

0.1047196E~-08
0+2807227E-07

0.1058974E-08

0.1021770E£-08
0,1051 760E-08
042272396E-07
0.2137729E~09
0.7140287E-08
0.1556327E<07

THETA(1)
0.8535017E-11

0.1237201E-10"

0.1806080€E~-10
0.1268558E~-10

0.1372250€<i0 "~

0.1560230E-10
0.7749053E~-13

0.1685910E~10 ~

0.1238791€E~10
041228628E~10

0. 1226371E-10"

0.1224855€-10
0.1234432€E-10

"0.1243638€-10

0.1245459&£-10
0.1246870E-10

0.1685310€-10"

0.1685910E-10
0.,1685910E~10
0.1696090E~10
0.1685910E-10
0.1685910E~10

0.1685910E~10 ~

0.1685910E~10
0.1685910£~10

'0.1685910E~-10

0.,16R5910€-10
0.1685910€E~10

‘0.1978587€-10"

0+.1930980£~10
0.19875625 10

0.19582226-10

0.1755379€~10
0.1711364E-10
0.1854621E-10
0.1793729E~10
0.2002473E-10
0.1527059€E-10
0.1590485E-10
0.1869713FE-10
0.2612151E-10
0.16859106-10
0.3089838E-10
0.3206878E-10
0.1685910E~10
0.1685910E-10
0.1685910E~-10

0.1685910E-10
0,1685910E-10

0.168B5910E~10

0+1685910€-10
0.1685910E-10

' 0.1685910E-10

0.16B5910E~10
0.1685910E-10

041964299E~10

0.1896697E~10
0.1950845E-10
0.19215067E-10
0.1749526E-10
0.1705526E-10
0.1838330E-10
0.17776450E-10
0.1961760E-10

"0.1532108€E-T0

0+1605509E~10
0.1849079€E-10
0.2497177€E~10
0.1685910E-10
0+2926671E-10
0+3025931E~10

~0.1141742E-04

(Continued)

THETA( 2)
-0.1529546E-08
~0.1535451E~08
-0.1538098€~08

—~041529351E~-08

-0.1523553€-08""

-0.1519873E-08
-0.1514981E-08

~0,1514553c-08

~0+1535474E~08
-0.1535500£6-08
-0.,15355186-04"
-0.1535528E-08
~0,+1535474€-08
-0.1535499¢€-08
-0+1535518€E-08
~0,1535528£-08

-0.1514553¢-08 7~

~0.31514553E~-08
-0.1514553E~08
-0.1514553-08
-0.1514553E-08

-0.1514553€E~-08

=0 1514583E-08

-0.1514553E~08
-0.1514553E-08
-0.15145536-08
-0.1514553€-08

~0.1514553E~08

"-~0.5894763E~04

~0.6052546E-04
-0.5916820E-04
-0.6029944E-04
0.1234002€-04
0.5358688E-05
0.1141457E-04
0.6177463E~0S
~0e5972774E~-04
0.1239277E-04
0.54921936-05
0.8760438E-05
~0.4260587E-04
-0.1514553€-08
-0.8361506E-05
~0.2548355€-04

-0.15145536~08

~0.1514553€~-08
-0e1514553€E-08

~0.1514553E-08"

-0.1514553€~-08
~0.1514553E-08
-0.1514553E~08
-0.1514553F-08
~0.1514553E-08
~0+1514553€-08
~0.15145536~08
-0.,1514553€-08
0.5896701E-04
0.6054474E-04
0.5918754€-04a
0.6031875€E-04

-041234294E-04

—0.5361504E-05

~“0+.6180336E-05
0597471 1F-006

T -0.1239585E-04

-0.5494866E-05
-0,8763296E-05
0.4261966E-04
-0.1514553F~08
0.8364307E-0S
0.25491776-02

THETA(3)
0.9688784E-04
0.968R670E~ 04
0.9643887F-04
0.9554047E-04

0+9463947c-04
0.9389647€- 04
0.8625026E~04
0.78597006-04
0.9692377E-04
0.9695467E-04

1 0.9696979E-04"
0.9697401E-04

_ 0.9692377E-04

0.,9695467E-04
0+9696979E-04
0.9697401E~04
0.7859700€~04
0.7859700€-04
0.7859700E~04
" 0.7859700E-04
0.7859700E-04
0.7859700E~04
0.78597006-04
0+7859700E-04
0.7859700E~04
0.7859700E-04
0.7859700E~04
0.7859700E-04
"'0.7859700E<04
0.7859700E~04
0.7859700E-04
' 0.7859700E-04
0.7859700E-04
0.7859700E-04
_0.7859700E-04
" 0.7859700E-04
“~Q.7T785524E~03
0.7859700E-04
0.7859700F-04
~047673799E~-05
-0,7375402E-03
0.7859700E-04
~0.3634307E~03
~0.6043431E-03
0.78597006-04
0.7859700E-04
0.7859700E-04
0.7859700E-04
0.7859700E~04
0.7859700E-04
0.7859700£~04
0.7859700E~04
0.7859700E-04
'0.7859700E~04
0.7859700E-04
0.7859700E-08
0.7859700€-04
0.7859700E-04
0.7859700E~04
6.7859700E~04
0,7859700E-04
0+7859700FE~-04
0.7859700E-04
0.7859700E~04
-0.7785130E-03
0.7859700E-0b
0.7859700E-04
~0.7669873E~09 _
~0.73750276-03"
0.7859700E~0a
~0.3634107E~03

Tl6.6043117E-03



T2

-0.9029613E-08

TABIE I2 . SYNTHESIZED LABORATORY MODES (Continued)

Qt3)
0,7573929€&-02
0.7573757€E~-02
0.7572249€-02
0. 7569078E -02
0.7566117€~-02
0+ 7564589E-02
0. 7564589E-02
0. 7564589F ~02
0.7574853€-02
"0+ 7879I4SE-0S
0. 758471 0E-02
90055E-02
7684907
0.7583167E-02
0.75903576~02
07597525802~
-0.6832372€ 00
~0.6822334E 00

T=0..311280728-67"

TOLE566T43ES0TY

IHETA(1)
0.7574670E-08
0.7573838E-08
0,.,751665BE-08
0.7389811€~08"
0.7245049£-08
0,7111588E~08
0+5370605E-08
0.3257806E-08

~041427651E-07

—-0.3861264E-07
-0.4047074E-07

FTHET AL 2)

"-0.11228356-10

~0+10959856£-10
-0.1266852€~10

~0.1355387€=10

-0.1000971E-10
-0.9964279E~11
~0.5031423E-10
0.2738687E-11
~0.1095404E~10
0.1094960E-10
-0.1094630E-10
~0.10943656~10

THETAL )

-0.91982096=13"

~0.9653319E-13
~0.4049590E~-11

T -0.104402%~10

-0,1297249E~10
-0.1143153€-10
0.96133806-11"
~0.1535518€~12
~0448056026=12

TUGL 735138 TETiE T

~0.7806429¢~12
~0e7572253€E~12

T 042934343€E-07

0+4630921E-07
0.5380123€E-07

<6.1096207E~10

~0.1096683E~-10
-0+1096886E~-10

-0.9790931E=-13
~0.1123166E~-12
~0.1876884E-13

0.3257806E-08
0.3257806€£-08

"<6.,6630508E 60

-0.6826009€E 00
~0.5374672€ 00

-0.5370303€ 00
-0.4621130€ 00

"-~0.4613209€ 00

-0.4619709E 00
-0.4616154E 00

" =04 1030480E 00

~0.1030480E 00
~0+1030405€ 00
~0.10364065€E 00

0.715B626E~02

0.7253878E-02

~0.1030336€ 00

0.3257806E-08
0.3257806E-08
0.3257806E-04
0.32578306E-08

0.3257806E-08

0.3257806€E-08
0.3257806E-08
0.3257806€-08
0.3257806€E-08
0.3257806E-03

0410120004

0.,4102154E-04
0+4491619E-04
T0.44923258€~00
0.6063668E-05

0.6060366F~-05

0.1556 7126087

0.1556105E~04
0.5140828€-04

T 0.,7108148E-02
0.7564388E-02
0,7206362F -02

0+7564548E~-02
-0+1080614E-01

-0, 1485551€-0a"

~0+1444845S€E-04
0s1766994E~04

0.3257806€-08
0.1144258€E-03

-0.4511463E-01
~0.6835421€ 00
-0.5825380€E 00

T0.1474968E-03

0+3257806E-08
0+3257806E~-0

T=0.,4623213€7

~0,6833558E 00
~0,6829057E 00
5377052€ 00

5370233¢
-0.5375734E
-0.5372682F

00
00

-0.4615288€
~0e4621792E

B

B8

0.3257806E~0
0+3257806E-08
0+3257806E-08
0.3257806€-08"
0.3257806E-08
0.3257806E-08
‘0.3257806€-08"
0+3257806E-08
043257B06€-08

~6.4618236E
-0.1030897E
-0.1030897E

0.3257806€E~08 ~~

~0.4102316E-04
~0.4103378E~

o T2285TTE=0y

~0.TOG7083E-10
0.2738687E-11
0,2738687€~11

T0.2738687E-11 -

0.2738687E-11
0.2738687€-11
0.273868B7E~11

0.5756029E=1F
-0.15355156~12
-0.15355156-12
=0.15355156-12
-0+15355156~12
~0s1535515€E=12
~0,15355156~12

0.2736868B7E~11
0.2738687E~11
0.2738687E-11
"0 2738687E-11
0.27386A7E-11
0.27386876-11

0.1255876€E-08
0.1255258€~08
‘0. 1255753E-08
0.,3208527E-09

0+.266620BE~-10

0+,9977255€~10
0.1255390€-08
0.42232176%0%
-0.7815454E~10
0+1740024€~09

0.1255260E-08 .

0.2386309£-09

<0.153851686<12 7

~0.15355156~12
~0.15355156=12
TL0.15355156~12
-0.15355156~12
-0.15355156-12
-0.1535515e=12
-0.15355156-12
~0.15355156~12
C0.15388186-12
~0.15355156-12
~0.15355156—12
=0.1535515€-12 7~
~0.15355186~12
0.1718274E-10
T=0.18355186-12
-0,+15355156-12
~0.3371872E~10

0 9B50436E-09
0.2738687€E~-11
0+4443499E-09

0.7146963E-69

0.2738687E~-11
0.2738687E-11

0.2738687E-TT

0.2738687E~11
0.27386876-11
"0.2738687E-T T
0.2738687E~1.1
0.27386A7E-11
0.2738687E~11
0.2738687E-11
042738687611

0.17209K2E-08
0.,1721514-08

=0.1030822€E
~0.1030822€
0. 7158834E-02

=-0.4492930E~0
~0+4493637€~04
=0.6059342E-05

TT0V1720899€E-08

0s1721344E-08
0.3518799E~09

0.2531070E~05

0,7320285€E~-02
0.7181756E-02
0s72564131E-02

'~0.1030753E 60

0.7108338E—-02

0. 7564 779E-02
T 0. F206596E~02
-0.8031249E-01

0.7564623E~02
-0.1081213E~01
-0.4513404E-01

MODE 5 Frequency = ,38111hk Hz
MASS NO. at1) Q(2)
i 0.7536634E-09 -0.1644374E-05"
2 -0.1268183E-08 =-0.1188847E~05
3 -0.3005620E-08 -0.,7293478E~-06
4 0.3170859E- 08 0.1688330E<06
s 043609640E-08 0.1057960E~0S
6 0.2425026€6~08 0.1492128E~05
7 046130620E~08 0.2882251E-08
8 04592562408 0+3842233F~05
9 -0.1284191E-08 =~0.1188882E-0S
T 10 -0.13983IBBE-0R T ~0.1188933E6-05 "
11 -0.1512251E-08 -0.1188972E-05
12 -0.1600292E-08 =-0.1188992E-0S
TTI3TTS0.1274920E08 -0, 1 1868B3ES05
14 -0.1247919E-08 -0.1188936E-05
15 -0.1229556E~08 =-0.1188976E~05
I8 ~041247970E-08 T 0. IV HBYSTESDE T
17 0+2551696E- 06 0.3850199E-02
18 -0.1618914E-06 -0,3839950E~-02
1Y 0 13144276-06 019121676503
20 -0.55527376-07 ~0.1901826E-02
21 -0.5483287e-08 0.4853662E~02
22 0.1235873E-06
237 0.,3936242E~07
24 0+9734316E-07 -0,23473336-02
25 042454 8G64E-06 0.2838729E~02
26 -0.2974292E-06 -0.2829326E-02
27 0¢9613859E~07 0.1461621E-02
28 ~0.1471919E-06 ~0.1452361E-02
29 -041719297E-06 ~0.5846993E~02
30 0.1557539E-06 =-0.5835116E~02
31 -0.8155376E-07 0.,2800423E-02
T3z 0.H0533458E-07 =-0.2787927E~02
33 -0.2820174E~07 0.1821404E-02
34 0+1723264F-07 -0.181287
T35 -0.757275SE-08 7 0.,1008073E
36 0.1279935E-07 =-0.9999126E~03
37 118047E-08 0+6354343E-05
T 38 120859906 '~ 0.5044369E=
a9 0.6927312E-08 0.2640109€E-05
40 0.4858400E-08 0.3561497E-0S
AT -0 V1 STAB2ESOT T U B TE622ZES05 ~ 0. 8027923IE=010
a2 0,5923447E-08 0+3842233E-05
43 -~0.,4075154E-08 0.4559774E~ 05
44 -0.1052692E-07" " 0.5158024E=05
as 0+283C990E~-06 ~-0,3843260E-02
46 -0.1906868E-06 0.3848596E~-02
a7 0.14326336-06 -0.,1904908E<02
48 -0.69162076-07 0.1910012E-02
a9 0.85373426-07
T80 0.17603176~07 «aB8S1662E-02
51 0.77009%9E-07 ~0.2351702E-02
52 0.4697403E-07 0.2355712E~02
637 061327293E~-06 ~0,2831346E-02"
84 -0.,16560HBE-06 0.28375156-02
55 0+4999060E~07 -0,1454168E-02
56" "~0.8377896E-07 " 0.1460348E-02
57 =~0.2283129E-06 -0.,5840998E-02
58 0+ 220R99RE~06 0.5844597E~-02
T 597 ~0.1044056E-06 0. 2793576027
60 0.9695526E-07 0.2796489E-02
61 <~043157725€-07 =0.1813598E~02
62 0.1856649E-07 7 "0, TE20578E-02"
63 ~0.8904834E~08 =-0.1000424E~02
66 0.13631246-07 0¢1007682E-02
6% -0.3732502E~08. 0.13382176-05
66 =-0.1328070E-06 0.5044369E-05
67 0+6945680E~-08 0426401 09E~-0S
‘68 0.4820222E-08 < 0.3724057E-08
69 -0.8606655E-08! 0.1934618E-05
70 0.,5926985E~08 0.3842233E-05
71 -0437724706-08 0.3127857€-05

~0.6057016E-05

~0.1556679E-04
-0+1556207E~04

-0.5182455E<04

0.1446770E-04
0.1446205E€-04

T -0 1767T19E~0a”

~0.1226988E~03
0.3257806E-08
-0 1144698E-03 ~
-0.1475552E-03

0.29609076-10 "

0.2739218€~-09
0.1109728E~-09

02738687611

0.678931TE-T1
-0.1535515E~12
~043344691E-10
=0.1565716E-10
-0.1535515€E-12
~0.1535515€6~12
T-0.1535515€E<127
~0.1535S15E-12
-0+15355156-12
=0.15355156~12
-0.15355156~12
-0.1535518E-12

-0.15355156-12"

~0.15355156-12
-0,15355156-12
TE0.15355156-13
-0.1535515€6~-12
~0.15355156-12
S0.15355158~12
~0+1535515E-12
-0.1535515€-12

T=0Vis3ssisF-12 T

=0,15355166-12
-0.15355156-12

0172093 7EX08
0.46071776-09

~0.87898B81E~10

0. 1926209€6-09
0.1338857€~-08
O 7386B7E- 1

"0.5747605 9 -

0+9567780E-09

~0,2371490E-10
~0,15355156-12

-0.15355156-12

0. 3491228610
-0.1259517€-10 /
~0,15355156~12

0.29979968E~10
0.1004093E-10



MODE 6 Frequency =
MASS NO. e
I -0.2519131E-08
2 -~0.110R486E-08
3 0.3089580E-08
4 0.4585694E-08
s 0.2871856E-09
6 -0.1455005E-08
7 -0.2002630E-08
8 -0.1327272E-06
9 -0.2518991F-08
10 -0,3884306E~-08
11 -0.5412449E-08
12 -0.7031520E-08
13 0.3308804E~09
14 0.1825068E-08
15 0.3307303E-08
16 0.4777657E-08
17 -0.8940714E-07
18 0.7376627E-07
19 -0.4328619E-07
20 0.2997849E~07
21 -0.1627184E-06
22 0. 15091 67€E-06
23 -0.78800676-07
24 0e616407BE~07
25 0.1728652t-06
26 -0.1420352E-06
27 0.8756621E-07
28 -0,5346915E-07
29 0.1628151E~06
30 -0.9056419€E~07
31 0.9285344E-07
32 -0.2070011E-07
33 0.5286008E-08
34 -0.,1974152E-08
3s 0.1537890€-08
36 -0.17683336-08
37 0.3606118E-07
38 0.2185822E-07
39 0.3512796E-08
40 <~0.6253100E-09
41 0.,2471936E~07
42 -0.3142524E-09
43 0.3504114E~-08
a4 0.131£435€-07
45 =-0.2300435£~07
46 -0,3225119E-07
47 -0.2639063E~07
48 ~0.3055906E-07
49 -0.8660962E-08
50 =~0.7712096E-07
51 =0,3085351E~07
52 -—0.7029564E-07
53 -0.2142757E-06
sS4 0.1529876E~ 06
S5 -Cel144466E-06
56 0.5011299E~07
57 =0.3501295E-06
' s8 0.1260770E-06
59 =0.2187583E-06
60 ~0,5306870E-08
61 -0,A067104E-08
62 0.4469644E-08
63 =-0.3160054E-08
64 0.2580129E-08
65 -0.1121239€-06
66 -0.2791745E-07
67 0.53164970E~08
68 0412999676~09
69 ~0.7489916E-07
70 0.1390774E-10
71 -0.1251788E-07

-0¢3998930€-07

I8

TABLE I2 - SYNTHESIZED LABORATORY MODES (Continued)

.381605 Hz

a(2)
D+7330623E~02
0.5308751€~ 02
0.3279069E~02

~0,7349586E~ 03

-0.4675S7SE-02

~0.,6607983E~-02

-0.1279315E-01%

-0.,1705660E-01
0.5308919E-02
0.5309157F~02
0+ 530934 0E - 02
0.5309436F~02
0.5308919E~02
0.5309157E-02
0,5309340E~02
0.5309436E- 02

~0,1540823E~01

~0.1920190E-01

-0.1611323E-01

-0.1817390E~01

-041437739E~-01

~0.2015069E-01

~0.1565904E-01
~0+1860107E-01
~0.,1639122E-01

-0,1819010£~01

-0.1655155E~01

~0,1772339E-01

~0.1330978E-01

-0,21043426~01

~0.1519284E~01

~0.1900684E~01

-0.1732758E~-01

-0.1712067E~01

-0.1697457E~ 01
~041725196E-01

~0.1707523E-01

-0.2238763E-01
~0.1172557E-01
~041705S909E~01
-0.17071276-01
-0.1705660E~01
~0.1706319E-01
~0.170672SE~-01
~0.1540997E~01
-0.1920016E-01
-0.1611409E~01
-0.1817304E-01
-0.1837958E- 01
~0.20148S50E-01
-0.1566010E-01

-0.1860001E-01

-0.1639250E- 01}
~0,1818882€E~01
-0.1655221E-01
-041772273E-01
-0.1331243E-01
-0.2104078E- 01
-0.1519410E-01
-0.1900558E~- 01
-0.1732840E~01
-0.1711985-01
-0.1697503E~-01
~0.1725150E-01
~041707523E~01
~0.2238763€E~-01
~0 11728576~ 0y
-0.1705910E-01
-0.1707127E-01
~0.1705660E-01
~0,1706319E- 01
~0.1706725E~01

at3)
0.1702252E-05
0.1702292E-05
T 0+41702626E~05 "
0.1703344E-05
0.1703974E-05
0.1704339€-05
0.1704339E-05
0.1704339E-05
0.4447103E-02
0.8495212€~-02
0.1254557€-01
0.1659626E-01
~0.4443698E~02
-0.8491803E~02
-0.1254217E-01
-0.1659286E-01
-0.6778843E 00
~0.6768875E 00
-0.6776993E 00
-0.6772525E 00
-0.5273378E 00

| <045266593E 00

~0.5272068E 00
~0.5269035E 00
~0.4634662E 00
-0.,4626816E 00
~0.4633251E 00
-0.4629733E 00
~0.9289616E-01
-0.9289616€~01
-0.9288877E~01
~0,9288877E-01
0.4702681E-03

" 0.6286150E-03

0.4928242E~03
0.5638092E-03
-0.9288204E-01
0.4208670E-03
0.8685379E~-03
0.5173829E-03
~0s7411921E-01
0+17S0715E-03

-0.1340506E-01
-0.4327897€-01
0.67757SEE 00
0.6765794E 00
0.677390SE 00
0.6769441E 00
0.5270953E 00
0.5268169E 00
269642E 00

THETA(L)
-0.3365520£-04
-0.,3365302€E-04
~0.3330705E-04a
~0.3284613€-04
-043219243E-04
-0.3160175€E-04
-0.2361673E~04
-0.1464727€-04

-0+3369298E-04

-0.3372628E-04
-0.3374259E-04
~0.3374713€-04
-0.3369298E~04
-0.3372625E-04
-0.3374257E-04

' -0.3374711E-04

~041444727E~04

-0.1444727£-04

-0.1444727E-04
~0.1444727E-04
-0.1444727€-04
-0.1444727E-04
-0.1844727E-04
-0.1444727E-04
-0.1444727E-04
~0.1444727E~04
-0+1444727E-04
-0.1444727E-04

0.2471270E-04

0.2715728E-04

0.2903534E-04

0.3054284E-04
-0+9615173E-05

-0.7372310€-05

-0.7309683E-06
0.2369680E-05
0.3619812E-04

~0.2701674E-04

«3024541E-04

THETA( 2)
0.1055995E-10
0.1155339€-10
"0 1384913E-100
0.1415044E~10
0.1771418E-10
0.1641748-10
-0.3706081E-11
0.1245948E-10
041155720E-10
041155881E-10
0.1156046E-10
0.1156174E-10
0.1155696E~10
0.1155833F-10
0+1155980E~10
0.11560986~10
0.1245948E-10
0.,1245948E-10
0.1245948E-10
0+1245948E-10
0.1245948E-10

T0.1245948E-10

0.1245948E~10
0.1245948€E-10
0.1245948E-10
0.124534RE-10
0.12459486-10
0.1245948E-10
~0,9705350E-09
~0+.9707304E-09
-0.9708473E-09
~0.9706154E-09
-0.5777531E-10

0.5758744€-11
-0.4400530E-10
~0.1179721€-10
~0.9703944E-09
-0,7593656E-10
0.3200690E~10

"0.2846022€E-05

0.1061081€E-03
-0.1444727E-04
"0.9716494E-04

0.1298796E-03
-0.1444727E-04
~0.1844727E-04
-0.1444727E-04
-0.1444727E-04
-0.1448727E-04
-0.1444727E-04
-0.1444727€E-04

~0.2845241€E~10
~07349079E-09
0.1245948E 10

-0.2639386E-09

-0.4994232E-09
0.1245948E-10
T0.1245948E~10
0.1245948E~10
0.1245948E-10
0.1245948€~10
0.1245948E-10
0.1245948E~-10

266610E 00
0.4632576E 00
0+4624734E 00
0.4631166E 00
0.4627649E 00

0e9284961E-01

0.9284961E~01

0.9284228E-01
0.9284228E~01
~0.4670424E03
-0.6253163E~03

0.,9283549€-01
~0.4176642E-03
-0.8651293E-03
~0.5140959E-03

0.7408297E£-01
~0.1716629E-03

" 0.1340017E-01

0.4325856E-01

~0.1644727€~08

-0.18344727€-06
-0.1444727E-04
~0.1343727€-04
-0.1444727E-04

0+2469415E~04

0.2713878€-04

0.2901509E-04
0.3052253€-04

~0.9617907E-05

~0.7375049E-05
-0.7379945E~06
0.2362654E~05
0:3617496E-04
~0.2701022E~04

"-0.3023889E-08

0.2838043E-05
0.1060527E-03
-0.1444727€E~04

0.9711327E~04
0.1298130E~-03

0.1245948€-10
0,1245948€E~10
0,1245948E~10

0.1245948E-10

0.1B24861E-08

0.1824937-08

0.1824721E~-08
0.1824813E-08

T0.7359133E-10

0.1916231E-10
0.6230558E-10
0.3459513~10
0.18245556-08
0.8811110E~10

-0.4024672E-11

0.4913193E~10
0.1380699E-08
245948E-10
"0.4929892€-09

0.9368435E-09

0.1245948E-10

THETA( )
0,4809150E-11
-0s1144607-10

~0s1262153E-10

~0.1797634E-10
~041343980E-10
-0.1536066E-10
~0.6611588E=-11
-0¢1551449F~10
-0.1148739E-10
-0.1207238E-10
~0.1279€91E~10

~0.131370SE-10

-0.11651R0E-10

. ~0.41199321£-10

-041229213E~10
-0.1240774E~10
~0.1551449€-10
~0.1551449E-10
-0.1551449E~10
~0.1551449E-10
~041551449E-10

~0.1551449E=-10

~0+1551649€~10
-0.15514496~10
~0.1551449E~-10
-0.1551449E~10
-0,1551449€-10
-0.1551449E~10
-0.15514495-10
~0.1551449E~10
-0.1551449E-10
-0.1551469€-10
-0.1551449E-10
~0.,1551849E-10
~0.15514496-10

-0,1551449E-10

0.4467532E-10
~0.1551449E-10
~0.1551449E~-10

T ~0.6376646E-12

0.4575462E-10
-0.1551449E~10
0.3008242E-10
0.4380768E~10
-0.1551449E-10

-0.1551449€-10
-0+1551449E-10
~041551449E-10
~0.1551489E-10
-0,1551449E-10
~0,1551449E~10
-0.1551449E-10
~0.1551449E-10
-0.1551849E~10
~0.1551449E~10
-0.1551449€-10

~0.155144GE~10

-041551449-10
~041551449E-10

T -0.1551449E<10

-0.1551449F~10
~0.1551449E-10
-0.1551449E~10

0.1483672E-09
~04 1551 489E~10

0+9066517E-11
0.1450980E-09
—0+1551449E-10
0.8478308£~10
0.1279185E-09

“0+1551449E=10

T -0.1551449E-10
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APPENDIX J
DATA FOR DEMOSTRATION RUNS

The physical properties of the structure illustrated in Figures 6.1 and 6.2
are pfesented in Appehdix F. The same properties were used in all demonstration
runs. The synthesized modes of the Laboratory are presented in Appendix I.
Additional data (including initial conditions, control-system parameters, and

fluid parameters) are Specified in this appendix.
Jl. BASIC DATA

The symbols of Section 4 are used in describing the basi¢ data. In each

run

. » Y - - - » -

fg*s = {RE =88 = £@g%8 = O
and

{ ,’Z,‘} ={6:¢

Additional basic data is given in Table J1. Where the word "quiescent" is

listed for initial elastic displacements,_quiescent initial'displacements were
obtained by introducing 80% of critical damping into the structure, and rotat-
ing the fully extended undeformed Space Station at .4189 rad/sec.* A preliminary.
computer run was made and the displacements resulting when the vibrations damped
out are the quiescent displacements which were used as'initial conditions in the

indicated runs. In the preliminary computer run, no fluid or moving masses were

present on the Laboratory.

J2. CONTROL-SYSTEMS DATA

Control-systems data is presented in Table J2.using the notation of Appendix
H. Additional Data for-the Mass Balancing run is given in Table J3 Both moving

masses move along axis X

3
J3. FLUID MOTION

The fluid system is shown in Figure J1, The eﬁptying reséivoir is located
on mass 8, and the filling reservoir is located on mass 2. Thé fluid is
assumed to be water at room temperature. Except for the pump command system,
the controls were not. operating duriﬁg the fluid run. The fluid-run data is
given in Table Jk. ‘In this Table the notation of Section 4 is used except for |

the pump commaﬁd data which is presented using the notation of Appendix H,

* The quiescent 1n1t1al conditions are among the input date prlnted for
Example 2 of Appendix B2 in Volume IT.
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Table J2 - CONTROL-SYSTEMS DATA

Property Run
Attitude | Deployment Spin Wobble Mass
Control Up Damping Balancing
General Data
ig 4 I L L L
I (N) 222,411 LL448,22 66723.3 222,411 222,411
Counterweight Command
{C3U (m) 42.8223 42,8223 42,8223 42.8223 42,8223
t{O3U (sec) 950 1 950 950 950
Sy (m/sec®) | .03048 .254 .03048 .03048 | .03048
vel{o3MAx(m/sec) . 06096 1.27 . 06096 . . 06096 . 06096
Spin Command
w , (rad/sec) 0 .0209k .0209k 14189 .14189
Wy (red/sec) 0 . 0209k .14189 .1189 .1189
2
ace 1 (rad/sec”) .OL .ok .OL ol .OL
t e (sec) 950 950 5 950 - 950
Attitude Control
€ pp (rad) .0001745| .0001745 .0001745 | .00017L45 | 0001745
éBMAX (rad/sec) .001745 .001745 .001745 | ..0017k45 . 001745
XJ1 (m) 1.8288 1.8288 1.8288 1.8288 1.8288
Spin Control
€ J1DB (rad/sec) .0002094 | .000209L .00kL 0002094 | .000209k
Wobble Control
BG'(rad) 0 0 0 "0 0
By (rad/sec) 0 -.02094 - . 02094 -.4189 -.4189
K, (N.m/sec) 325.396 325.396 325.396 325.396 325.396
ta oy (N.m) 40,6745 40.67u45 40.67u45 40.6745 40,6745
(N.m.sec) 40.6745 40,6745 40.6745 40. 6745 40,6745 -
momCMG(kg.mg/sec) 271.164 271.164 271.164 271.164 271.164
Taetm (kg-m?) 20.3373 20.3373 20.3373 20.3373 20.3373
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Table J3 - ADDITIONAL DATA FOR MASS BATANCING RUN

‘ Property Value
Balance Mass Control

b, (k&) £266.13
\component 3 of {Ug} (m)* 8,85236‘
ﬁé3 (m/sec) : 0
91Esi"(kg) - 2206.13
Kexsi (none) - T
Kopsg (1/sec) 36k
TRAL (séq) o

W opALL (rad/sec) Wb
{XAiS} (m) o
component 3 of {XS%EQ/CM}_(m)* 26.8551
Moving Mass Command

b, (le) 4532.27
componeht 3 of {Ul} (m) 19.3581
Uy (m) 12.3543 ;
ty (sec) 5 .
achAG (m/secz) .254
vely o (m/sec) .381'

%* The other two components are zero.




Table Jh

J-6

- FLUID RUN DATA

’Property Value
General Data
o (kg/m) 998.797
A (o) .00967740
Emptying Reservoir
b8 (m) .635
h8, o (m) 762
hg ox (m) 1.524
h81nin (m) 0
Filyling Reservoir
b2 (m) -635'
he, o (m) .508
L (m) 1.524
iy () ©
Pump Command
Vv (m/sec) 0
Vy (m/sec) 3,048
t ey (sec) 2
acc, . (m/sec?) 1.52h

MAG ’
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APPENDIX K

DATA FOR RIGID-BODY RUNS USING CONTROL-SYSTEMS DEVELOPMENT PROGRAM

The Space-Station paramster values used are given in Tabile Kl
below. These values were the same in each run, ' The input data that
varied from run to run is présented in Table K2. The symbols used in
the model of the rigid-body vehicle are defined in Table K3, and the
symbols used in the models of the command and control systems are

defined in Table HlL of Appendlx H.

Computed Control Parameters

The following parameter values are computed rather than being
brought in as input.*

(x*(3,13) - x%3(3,20) /i, (1,1)
lacegg) = g { (R3(3,0) - x43(3,12) /i, (2,2)
(x'3(1,15) - x%3(2,1) /Mil(s,s)

acéwlc = éf&ET’(XAj(3,13)-xAd(3gld) ‘/Mll(l,l)

Common Initial Conditions _ \

The following initial values of space station variables were used for

all the runs.,

23 =0lo - 0o o =m

(7} = [o o ol m/sec

* 1In the flexible-body idealization, acey o

is input dasta.
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Table K1 SPACE STATION PARAMETER VALUES USED IN
RIGID-BODY DEMONSTRATION RUNé*

M, = 43639.25 kg -
[IA] = | 4365563. 0 0
0 2365321. 0
0 0 2068901. | kg. u°
{xAj}_ = [-1.829 .0 6.0047 m 5o through 4
[-1.829 o -3.130F =5 through 8
[ 1.829 o -3.130F =9 through 12
[1.829 . o  6.om7" =13 through 16
[ o o 5.8 a7
My | = 34023.71 kg
I = [ 1951484, o 0
0 265201 0
0 0 1751259. | kg
{e] - L o 0 ol rag
(Y25} = [-1.829 o 6.60m j=1 through b
[-1.829 o 2547 =5 through 8
[+1.829 o -2.547F =9 through 12
0 6.611" =13 through 16

[+1.829

—————————————

* The symbols are defined in Table X3
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Table K2

INPUT DATA FOR RIGID-BODY RUNS .

KEY TO RUNS

Run No. =~ Maheuv’er
10 ~ Attitude Control
21 - Counterweight Deployment
31 - Spin-Up
40 - Mass Balancing
50 - Wobblé Demping
60 - Simultaneous Mass Balancing and Wobble Damping
| Run Mber | ‘
10 21 31 Lo’ 50 60
Variables .
{0} (rad/sec) 0 0.02094 | 0.0209% | 0.4189 | 0.4189 | 0.4189
' 0 0 0 0 0.001 0.001
- 0 0 0 0 0 0
{6} (rad) 0.017453291 0 0 0 o 0
0.017453291 0 0 0 0 0
10.017453291 0 0 0 0 | 0
m, (kg) 2268.24 2068.24 | 2068.2h |L536.5 | 2068.24 | 45%.5
m, (kg) | 2268.24 2268.24 | 2268.24 | 2268.24 | 2268.24 | 2268.24
M) @) 0 0 0 0 0 0
_ 0 0 0 0 0 0
, 0 0 o 0 0 0
{x(e)} (m) 0 0 0 0 0 0
g 0 0 0 0 0 0
0 0 0 0 -0 0
%) (@) 0 0 0 0 0 0
g- 0 . o - 0 0 0 0
(| -23.99 -23.99 | 66.81 |-66.81 | -66.81 | -66.81
B (rad) 0 0 0o 0 0 0
B (radfsec) - | O ~0.02094 -0.02094 | -0.4189 | -0.4189 | -0.4189 -
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Table K2 (Continued)
Run Number
10 21 31 4o 50 60

Commands |
®, (rad/sec) 0 0.02094 |0.02094 |0.4189 0.4189 0.4189
W, o (rad/sec) 0 0.02094 {0.4189 [0.4189 |0.4189 | 0.4189
tyry (see) 300 950 5 300 300 300
X 3¢ (m) o - 0 0 0 0 0
%3&1@0 o 0 0 1.524 0 1.52k4
tXl3CU(sec) 300 950 300 5 . 300 5
XB3C (m) -23.99 -23.99 -66.81 -66.81 ~66 .81 -66.81
Xgzcy (m) -23.99 [ .66.81 |-66.81 | -66.81 | -66.81 | -66.81
tXB3CU(sec) 300 5 300 300 300 300
Parameters
A time (sec) |0.025 0.025 0.025 0.025 0.025 0.025
time e (sec) 100 800 50 50 50 50
opB (rad) 0.00017k45 |
éeMAX(ra.d/sec ) 10.001745
g () 222.4 222.4 22241.1 |222.4 222.4 222.h
ewlDB(rad/sec) o.oooé09u 0.000209%| 0.000209k4 0. 00020940, 0002094
accpy (m/ sec2) 0.03048
velMBC(m/sec) 0.0609%
KeXSE(sec) 200 200
ekDB(m/sec) 0.0003048 0.0003048
ach23 (m/seca) 0.609% 0.609%
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Table K2 (Continued)

'R.un Mber ‘
|10 21 31 4o 50 | 60
Parameters |
(Continued) o 0
{Xpmed (m) 0 0
SENS 4.654 L.654
m oo (58) | 2268.2k4 | : 2268.24
K, (N.m/sec) - 325.4 2l Lo5
tay oy (N.m) 40.67 40.67
K3 (N.m.sec) 40.67 40.67
momCMG(kg.me/sec) : 2'?1.164' 271,16k
IBGIM(ks-mE) 20.3373 | 20.3373
accl3(,(m/se02) | .03048 ' . 0.03048
.velMlC (m/sec) ' ‘._3014-8 | ' 0'.1304.8‘
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Table K3

DEFINITION OF SYMBOLS USED FOR THE MATHEMATICAL.

MODEL OF THE RIGID-BODY VEHICLE

Definition

moment-of-inertia matrix of Laboratory
(not including mi) about X axes (off-
diagonal terms are negatives of cross-
products of inertia) '

moment~of-inertia matrix of Coﬁnter-
weight about Y axes (off-diagonal terms

are negatives of cross-products of inertia)
mass of Laboratory

mass of Counterweight

moment -of -inertia matrix of Space Station
about axes parallel to X axes with origin
at ecm of Space Station

mass of ith moving point mass in Laboratory

axes fixed in Laboratory with origin at cm of -

Laboratory (not including the mi)
location of A, in X axes

J

location of center of mass of Counterweight
in X axes

location if ith mass in X axes

axes fixed in Counterweight with origin at
cm of Counterweight

location of Bj in Y axes

Matrix

Dimension
T ———————

3, 3

3,3

3 3

3, 17

3,2

3, 16



